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Abstract

The formation of cracks in elastic media such as sea ice generates elastic
waves in a radiation pattern being dependent on the actual fracture process
and the stratification of the medium. In the case of horizontal stratification,
this phenomenon can be idealized and mathematically modeled describing the
directionality of the acoustic emission produced by compact cracks in such an
environment.

The thrust of the present research has been to develop an analytical and
numerical model of the elastic wave field in range independent elastic environ-
ments for various seismic source mechanisms. The source types being considered
are explosive sources, point forces, shear cracks, and tensile cracks. First, the
compact source representations with fault surface in an arbitrary direction will
be derived, and incorporated in a numerical model for propagation in strati-
fied elastic media to yield the basic Green's function solution. This solution
is then applied to derive the seismo-acoustic field produced by more complete
cracking mechanisms, like non-compact and moving cracks. Finally, the effect of
anisotropy on the acoustic emission, e.g. in sea ice and periodically fine layered
sediments, will be considered.

The developed model is applied to the ice cracking noise radiation in the
central Arctic environment, and the characteristics of the field produced by dif-
ferent source and environmental parameters are discussed. The developed model
can be applied to the source inversion problem, i.e. the characterization of the
cracking mechanism from its acoustic emission with the purpose of obtaining a
better understanding of the general ambient noise in the central Arctic. Another
expected application is the development of remote sensing techniques suitable
for the study of mechanical properties of ice.

Thesis supervisor : Dr. Henrik Schmidt
Associate Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Background

The formation of cracks in elastic media such as sea ice generates elastic waves

in a radiation pattern being dependent on the actual fracture process and the

stratification of the medium. In the case of horizontal stratification, this phe-

nomenon can be idealized and mathematically modeled as a compact but di-

rectional source radiating in a stratified elastic medium, yielding the Green's

function solution. Further, the basic Green's function solution, by integration

in time and space, can lead to synthesis of the wave field produced by more

complete cracking mechanisms, like non-compact and moving cracks. A math-

ematical description of this phenomenon is essential to the inverse problem of

determining the source mechanism from experimental data, provided that the

medium is known on the basis of geological and geophysical data, and the for-

ward problem of predicting, with accumulated data, the field parameters of

interest at specific positions. Further, such a mathematical model is instrumen-

tal to the medium inverse problem of seismo-acoustic exploration, where, for

various types of excitation, the observed data are used to probe the geological
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composition. On this background, the research described in this thesis is cen-

tered around the development of an efficient mathematical/numerical model of

the acoustic emission produced by compact and propagating cracks in realistic

stratified environments.

To illustrate how the present research can be instrumental in understanding

an important physical problem, an application to the central Arctic ambient

will be discussed. The main source of the central Arctic ambient noise has been

known to originate from the elastic motion of the ice plate caused by environ-

mental stresses. When the stress in the ice plate is locally greater than the

strength of the ice causing fracture, the stored energy is released in the form of

elastic motion of the ice. This energy radiates into the water, forming ambient

noise when the events are aggregated. In order to better understand the Arctic

ambient noise generating mechanism, two levels of approaches are being pursued

[9]. One approach is to correlate the spectral and temporal characteristics of am-

bient noise to gross environmental parameters such as thermal changes, current

and wind stresses [33]. The other level of approach is to look into the individ-

ual ice cracking events, and treat them as a noise generating source element,

which forms the average ambient noise when aggregated. The latter approach is

based on the assumption that the central Arctic ambient noise is dominated by

the radiation due to mechanical processes in the ice cover, so that the ambient

noise is aggregate of individual events [9] [34]. Therefore, it is obvious that the

models that represent probable source mechanisms of a single event need to be

developed to understand the central Arctic ambient noise characteristics as an

aggregate of events.

In order to be more specific about the issue investigated in this study in rela-

tion to the central Arctic ambient noise, the processes involved in the generation

of the Arctic ambient noise can be categorized as (Fig 1.2)



(1) Development of environmental stresses,

(2) Ice plate motion induced by fracture due to the environmental stresses,

(3) Radiation from the ice plate into water.

The first phenomenon has been extensively studied and associated with the ob-

served ambient noise [31] [33]. The radiation mechanism from the ice plate to

water is also studied by some authors [10] [42] [24] [23] [22]. However, previ-

ous publications are mostly speculative, and assume certain simple source types

in the ice plate. Also, it is not clearly understood yet how the environmen-

tal stresses are released as a major source of induced ice motion. The possible

candidates are the three dominant types of crack [18] . Since the field obser-

vation of such cracks does not seem to be feasible, modeling of radiation from

different types of crack is comparative to infer the source mechanism from the

observed signal of the ice event. The fracture processes are expected to be dif-

ferent depending on the material properties as well as the stress distribution, of

which corresponding radiation patterns can be characterized by a set of source

parameters, such as fracture type, fault orientation and dimension, and prop-

agation speed. The waveguide nature of the laterally stratified medium affects

the radiated field as well. The observed signal, therefore, contains informations

characterizing such source and environmental parameters. The result of this

study applied to source inversion, by which the relationship between the ob-

served acoustic signal and the physical process of sound generation, will lead to

better understanding of source mechanisms, and, consequently, of the central

Arctic ambient noise as an aggregate of the individual event. Another expected

application can be found in the development of remote sensing techniques suit-

able for the study of ice behaviour and properties.



Environmental stress
or, articial loading

Other sources of sound
such as wind, snow,
and so on.

Propagation effect on average noise

I Observed ambient noise

Figure 1.1: The research issue applied to the seismic study of ice and the ambient
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1.2 Objective

The thrust of the present research is, therefore, to develop a model of the elastic

wave field in stratified environments for the various seismic source mechanisms.

The research effort in this thesis is focused on the modeling of the physical

processes of radiation from given types of source and propagation in a range-

independent environment, as described in the box in Fig 1.1, i.e. simulation of

the radiation patterns and time series for various given types of sources. The

source types to be considered are explosive sources, point forces, shear cracks,

and tensile cracks. Further the effect of transverse isotropy will be considered,

which is important in sea and lake ice, and finely layered sediments.

1.3 Approach

The approach taken in modeling the radiation and propagation in a laterally

stratified medium is divided into two part, the development of a mathematical

representation of seismic sources and numerical solution technique for laterally

stratified elastic media.

The representation of seismic sources utilizes the formulation by Keilis-

Borok(1950), reviewed by Sato[36], which introduces the displacement and force

potentials following the Love-Stoke formalism[25]. The formulation is compact,

and can be easily transformed to cylindrical coordinates, which is more conve-

nient for the stratified media due to the geometric nature of horizontal wave

guide.

The methods available for treating the acoustic propagation problems can be

categorized based on the geometry of the environmental model and the solution

technique. Confining our interest to the seismic and acoustic radiation and prop-

agation in ocean environments, the classification, based on the geometry of envi-



Figure 1.2: The solution technique

ronmental model, is by tradition divided into two categories, range-independent

and range-dependent media. A range-independent medium is also referred to a

laterally homogeneous, laterally stratified, or vertically varying medium.

Since range-dependent model allows more accurate modeling, a great amount

of effort is being invested. However, the solution techniques for a range-dependent

medium are certainly more complicated and computationally expensive due

to the more complex of the geometry. The available methods for the range-

dependent problems have certain drawbacks. For example, ray theory is a high

frequency approximation with singularities such as caustics, shadow zone, and

head waves, which need special treatment [7]. Modal approaches such as adi-

abatic and coupled modes for the range-dependent environment are available,

however they do not describe the near field properly. Also, the available codes
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are for acoustic media only. The parabolic equation approach is applicable to

weakly range-dependent acoustic media only. Numerically intensive methods,

such as finite difference method and finite element method, are available, but

they are not suitable for studying the long range propagation for computational

reasons.

Fortunately, for many cases, range-independent models can be applied effi-

ciently for many ocean-sediment environments as well as the ice covered ocean

found in the central Arctic, except when it is necessary to consider specific fea-

tures such scattering due to ice ridges. This class of models can be modified

to treat certain small imperfections such as roughness. Therefore, the solution

techniques available for range-independent seem to be more suitable for our

present research interest.

The most complete solution technique for range-independent environments

is the integral transform methods. By means of temporal and spatial integral

transforms, the partial differential equation of motion is reduced to an ordinary

differential equation in the vertical space coordinate z (Fig 1.2. The inverse

transforms can be evaluated analytically by means of asymptotic approxima-

tions, such as steepest descent, or stationary phase. However, to described total

fields, the inverse transformation must be evaluated numerically. The transform

method can be classified as three well known methods. First, matrix method

uses the time-frequency Fourier transform in order to formulate the equation of

motion in frequency domain. After reducing the partial differential equation to

an ordinary differential equation, a linear system of equations can be obtained

for each discretized horizontal wave numbers to evaluate the wave number in-

verse transform. Second, in modal method, the difference to matrix approach

is that the integral transform is replaced modal sum, which is equivalent to ne-

glecting the near field effects. Also, although the theory is being developed to
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solve for elastic media, modal method is mostly limited to an acoustic medium.

In generalized ray theory, the time-frequency inverse transform is applied first,

then the inverse wave number integration is evaluated [6]. Although ray theory

and modal method can be extended to laterally inhomogeneous medium, the

matrix approach proves to be the most widely used method for laterally homo-

geneous medium. Especially, the global matrix approach applied here give full

wave solution for all layers solving the azimuthal Fourier orders simultaneously.

The solution technique in a laterally stratified medium uses cylindrical co-

ordinates. The advantage of using cylindrical coordinates in range-independent

environment is that only one integral transform in variable r is necessary since

the azimuthal angle is in the form of Fourier summation, while, in rectangular

coordinates, two integral transformations in x and y are involved resulting in

the numerical inefficiency when evaluating the inverse transforms. In cylindrical

coordinates, the equation of motion is depth-separated by Fourier transform in

the azimuthal angle and Hankel transform in range. The remaining ordinary

differential equation in the depth coordinate z with proper boundary conditions

for horizontal interfaces yields a set of linear system of equation for each inter-

face. The local matrix is properly combined to yield the global matrix, giving

a full wave solution simultaneously for each azimuthal Fourier orders, and for

all layers. Once the depth-dependent solutions are found for each layers, the

inverse Hankel transform is performed for each azimuthal Fourier order. Now,

the frequency domain solution is found by summing the Fourier orders. Finally,

the time domain solution is found by frequency-time inverse Fourier transform

(Fig 1.2).
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Figure 1.3: Overview of the thesis

1.4 Overview of the Thesis

This section is intended as an introductory overview of the thesis. The topics

treated in each chapters are shown in Fig 1.3. The methodology is discussed in

somewhat detail, and the results are briefly presented.

In Chapter 2, the compact representation of seismic sources in a homoge-

neous, unbounded medium is discussed. First, the radiation due to a single body

force with arbitrary direction in a homogeneous medium is derived. Introduc-

ing the Keilis-Borok's compact formulation of arbitrary source time function,
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and again considering harmonic source function, the formulation in frequency

domain, which is relevant to present approach, is found. Then, the modeling of

seismic sources in a homogeneous medium is considered through the represen-

tation theorem and Burridge and Knopoff [5], by which displacement disconti-

nuities are replaced with equivalent body forces. Accordingly, the higher order

sources, such as shear crack and tensile crack sources, are represented as super-

positions of force couples in certain directions. In order to construct the force

couples to form higher order sources, a unified approach to represent all compact

sources by force potentials, following the Love-Stoke formalism, is discussed and

presented.

In Chapter 3, in order to incorporate these source terms into a propaga-

tion model determining the full solution in a laterally stratified medium, the

depth-dependent Green's functions in cylindrical coordinates are derived for

each type of source in Section 2. The homogeneous solutions in a laterally strat-

ified medium in cylindrical coordinates are assumed, by which the equation of

motion is separated into wave equations for each potentials by azimuthal angle

Fourier transform and Hankel transform in range. The remaining ordinary dif-

ferential equation with respect to z with a proper set of boundary conditions for

horizontal interfaces yields a set of linear system of equation for each interfaces.

The local matrices are properly combined to yield the global matrix, giving a full

wave solution simultaneously for all layers. Once the depth-dependent solutions

are found for each layers, the inverse Hankel transform is performed for each

azimuthal Fourier orders. The frequency domain solution is found by summing

the Fourier orders. Time domain solution is found by frequency-time inverse

Fourier transform. In this research, the prototype of three dimensional version

of a Fast Field Program (FFP), so called Seismo-Acoustic Fast field Algorithm

in Range Independent environment (SAFARI), which has been developed by
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Schmidt and Glattetre[38] is further developed to take seismic source terms,

and to solve the propagation in a stratified medium. This particular solution

technique is chosen due to the efficient simultaneous treatment of the several

azimuthal Fourier orders of the field.

In Chapter 4, a model for radiation from the non-compact, or propagating

crack is formulated, first for an unbounded homogeneous medium and then, for

a stratified medium. The field caused by the moving crack is basically found

by integrating the proper source Green's function over the fault surface, where

the source needs to be placed off the z-axis. The mathematical treatment of the

source off the z-axis involves the calculation of higher order Bessel function [38],

which causes the numerical inefficiency and convergence problems. Therefore,

a simple transform of the source and receiver position is used in this study so

that the source is always on the z-axis. Some simple examples are discussed for

which the analytical solution exists. The distinct characteristics of the radiation

pattern shows the directivity pattern dependent on the ratio of wave length

to crack dimension. When this ratio is large, the source can be treated as a

compact source. When the ratio is small, the field is highly directional. The

synthetic time series show the characteristics of the convolved source signal

with the dimension of the crack surface, such as the stopping phase, and poor

correlation between channels, and signal duration depending on the observation

positions.

Next, in Chapter 5, the propagation in a transversely isotropic medium,

which is characterized by 5 elastic constants, is considered. The equation of

motion is no longer reduced to the wave equation. However, the intermediate

functions can be defined to decouple the equation of motion for SH and SV - P

waves in cylindrical coordinates. The decoupled equations give 6 eigenvalues

and eigenvectors for up-going and down-going components of SH , SV, and P
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waves, respectively. Those intermediate functions are combined to formulate

a set of boundary conditions compatible with the Global Matrix method. An

example in a homogeneous unbounded medium shows the expected separation of

SH and SV waves when propagating in horizontal direction, which results from

the different shear modulus for vertical and horizontal directions. The slowness

surfaces are given and discussed for the example.

Chapter 6 discusses the crack radiation from the 3 modes of crack in a

floating ice plate. The discussion is focused on the characterization of each

source in terms of radiation and temporal characteristics. The radiation from

propagating cracks is also included for a typical set of source parameters. The

variation of the field due to source parameter changes are briefly discussed,

including the effect of the environmental parameters such as the anisotropy of

the sea ice. For source inversion from the data, more importantly to test the

developed model, an experiment is proposed. The objectives of this experiment

include studying the relationship between the observed acoustic signal and the

physical process of fracture mechanism, and further the mechanical behavior

and properties of ice under different loading conditions.

Finally, Chapter 7 summerizes the results and the discussions encountered

through the research, along with suggestions for further studies.



Chapter 2

Representation of Seismic

Sources

In this chapter, the representation of seismic sources in an unbounded homoge-

neous, and isotropic medium is considered in terms of equivalent body forces.

First, the representation theorem [1] [4] is introduced to represent the fault

motion by the body force equivalents, which are the double couples [5]. In

order to formulate the double couples in a compact form using Keilis-Borok's

results, the radiation from a single force is discussed in detail. The force and

displacement potentials are consistently used for ease and well defined math-

ematical manipulation, which is only possible for an isotropic medium'. The

single couples are shown to be obtained from the force by taking proper deriva-

tives depending on the direction, and the double couples are found from the

linear combination of single couples. Finally, the body force equivalents for

seismic sources such as strike-slip, dip-slip, and tensile crack with certain dip

angle are summarized. These results will be, in Chapter 3, transformed into

'The formulation of homogeneous solution in a transversely isotropic medium is discussed in

Chapter 5



cylindrical coordinates in order to allow an arbitrary dip angle, yielding a depth

dependent source functions.

2.1 Representation Theorem and Body Force

Equivalents for Seismic Sources

The mathematical description of seismic sources has been pursued along two

different lines[1] : First, in terms of body forces ; second, in terms of disconti-

nuities in displacement or strain across a rupturing fault surface or across the

surface of a volume source. When the representation theorem is used, it can

be shown that the discontinuity of displacement and stress can be expressed in

terms of body force equivalent. Consequently, the representation theorem was

used by Burridge and Knopoff [5] to show that the body force equivalents for

fault motion are double couples. The details will be given in the followings.

The displacement due to body force f, displacement discontinuity [u], and

the traction [T(u,n)] is, from the representation theorem, expressed as

un(X, t) = fdr f (, r)G,(x, t - r; 7,0) dV(r7)

+ f drfj {[Ui((,Tr)]cinfjGnpq(xt - T, 6,0) (2.1)

II
-[T(u(e, r),n)]G,p(x, t- r; (,0)}dE(e) .

III

The first term represents the body force contribution, while II and III are due

to the displacement and traction discontinuity contributions, respectively. Now,

neglecting the presence of body force and traction, only the second term remains.

And, using the relation

G,(x, t - r; e, 0) = - 6(r7 - ()G,,(x, t - r; r7,0)dV(r7) (2.2)
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Figure 2.1: Fault motion.

the second term in Eq 2.1 due to displacement discontinuity reduces to

un(x,t) = J dr f "(r,r)Gnp(x, t - r; 7, 0)dV(?) , (2.3)

where the equivalent body force for the displacement discontinuity [u] is

f [U](, r) = - [ui( r)]Cijpqnja 6(ri - )dE. (2.4)

Note that the surface integral for displacement discontinuity in the second term

in Eq 2.1 has been expressed in terms of body force equivalent in Eq 2.4, of

which form is found in the first term I in Eq 2.1.

As an example of a buried fault as shown in Fig 2.1, the equivalent body

forces can be derived from Eq 2.4,

a
fi(r7, r) = -Mo6(r71)6(1 2) 6(rs)Xo(T) ,

f2(rl, r) = 0 , (2.5)
a

fs(rl,1r) = -M-6(r;1)6(r 2)6(r73 )Xo(r) ,
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Figure 2.2: Body force equivalents for derivatives of Green's function.

where the seismic moment Mo in an isotropic medium is defined as

Mo=,pA=y x average slip x fault area. (2.6)

The corresponding displacement, from Eq 2.3 using Eq 2.2, is expressed as

Izt) = dr p a1 Gn 1 8 "3 dL'. (2.7)

In fact, the first and second terms in the curly bracket in Eq 2.7 represent single

couples in Fig 2.2. Since the two forces are combined in such a way that the

magnitude of moment remains constant while E goes to zero, i.e. lim-o cXo =

Mo, the single couples appear to be derivatives of a single body force.

In the following sections, the more compact form of seismic source representa-

tion using displacement and force potentials is derived based on the Love-Stokes

formalism, following Sato [36].



2.2 Radiation from Body Forces in a Homoge-

neous Isotropic Medium

As a basic ingredient in the representation of the various sources, the radiation

field due to a single body force is derived in detail.

The displacement equation of motion for a homogeneous isotropic medium

pVIu + (A + p.)V (V -u) + pF = p 82, (2.8)

where y and A are Lam4 constants and u is displacement, p is density, and F

is a body force. Or, equivalently

(A + 2t)V (V -u) - IV x V x u+ pF = (2.9)
82U

p at2 .

Taking the divergence and curl of Eq 2.9, we obtain

cC2 V2 V -u + V -F = a 2 v Uat2

CS 2V 2V x u + Vat =4 2

ccA + 2p
cc =

(2.10)

(2.11)

c,= (A)1/2

being the compressional and shear velocities, respectively.

Introducing body force potentials and displacement potentials,

F = (X,Y, Z) = VD + V x (L, M, N) ,

u= (u,v , w) = V4 + V x (F, G, H) ,

Eqs 2.10 and 2.11 become

(2.12)

(2.13)

(2.14)

82

and

with



a2 F
c, 2 2F+L = t

2G

c. 2 2G+M = atG
2H

c, 2 V 2H+N = 8 2H
at2

(2.15)

Now, the particular solution of Eq 2.15 can be expressed in the forms.

ff 1 (b (t - r') dx'idx'2dx'
47rc,2 r \ c ce/

F = L' (t - ) dx'idx'2dx'
47rc,2 r \ 8 c, 2

G = M'fff 1M (t - ) dx' dx'zdx'
47rc, 2  r \ , / )

H = 1ff1N' (t-r dx' dx' dx'
47rc,2 r \ c. 12)

(2.16)

where D,L,M and N are found from

4 = 111X
L = Zfffzt ar-_

4 r Y -

M =+111 (ar- 1 _

N=+111Y"ax,

Yr- 1 +Za- dx'dx'dxax2  aX3

Y'ar-) dx'dx'dx'

Z1ar') dx'dx'dx'ax' d 2d

a1(r-') dx'dx'dx4

where t is the time and r = /(x1 - X'4)2 + (x 2 - z') 2 + (X3 - 3i) 2. The proof of

Eq 2.16 for displacement potentials is drawn basically from the Possion equation

solution in an unbounded medium [25, pp.304] [1, pp.64-67] [35, §276]. Eq 2.17

for force potentials is also proved utilizing the solution for vector Poisson equa-

tion 2 [25, pp.184] [1, pp.69]. In the above expressions, the unit of vector quantity

2 Since the proof is elegant and educational, it is given. Force is defined through force poten-

tials, F = (X, Y, Z) = V4i+ V x (L, M, N). An vector Poisson equation for W can be constructed

with F as source term, F = V2 W, which can be rewritten as F = V(V - W) - V x (V x W).
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X' is acceleration, i.e. m/sec2 , and the scalar quantity Xo(t - r/ce) is source

time function and has the unit of force. Finally, substitution of Eq 2.17 into

Eq 2.16 yields the displacement potentials. The volume integral for displace-

ment potentials can be evaluated for an arbitrary source function by conversion

into a surface integral ; details are given by Aki[1, pp. 71].

The general formulation of particular solution to the wave equation with

a body force source in an unbounded medium has been derived, where the

source function can be completely arbitrary. An example for a horizontal force

with harmonic time dependence will be derived following the steps presented

previously. Later in Chapter 2.5, when the body force equivalents for seismic

sources are formulated in the form of force potentials, the results will be used

to find displacement field due to corresponding force potentials. The usage of

harmonic source function has been chosen, because the time domain solution for

an arbitrary source function can be found by time-frequency Fourier synthesis.

Example : Radiation from a single force in x-direction

For the case of horizontal force in xi-direction with harmonic time dependence

i.e. F = Xo6(x)ei, Eq 2.17 is simplified as follows,

<b = - X1 dx'dx'd
L = 0 (2.19)

M = fJ] (XI ' dx'ddx'

It is noted that the force potentials are now expressed in terms of W as, <D = V . W, and

(L, M, N) = V x W. The solution W for the vector Poisson equation is

/// F(()W = fff F d (2.18)
47r1x - e|

When the above equation 2.18 is substituted into the expressions for force potentials, <D = V -W

and (L, M, N) = V x W, Eq 2.17 is proved.



N = X~-J] dx'dx'dx'

The volume integrals in Eq 2.19 can be found using relation

p X'dx'dx'2dx' = Xo (t),

where ei is an unit vector in xi-direction, and X' = Xo6(

quantity Xo(t) is a source time function. Then, the force po

<I = ,o L =0 M - 0 ar M--
47p ax1 4xp X

Substituting Eq 2.49 into Eq 2.16, the displacement potentiE

1 1 r r-4(r,t) = - -f r t-- 1dx
(4F7rce)p f r 0C 81

F (,t) =0

(2.20)

x'), and the scalar

tential reduces to

Axo ar-' (2.21)
A4p ax 2

als are found to be

'dx'dx'

(2.22)

1 ff1X,( r B r-1G (r, t) = 2 - (t - dx'dx' dx'
(47rc.) 2p r c ( )

H (r, t) = - -Xto t- - dx'dx'dx'
(4 7rc,) 2p ff r -c, i 81 2

The volume integral for displacement potentials can be evaluated for an arbitrary

source function by conversion into a surface integral

1 a 1 - rCd4= r Xo (t - r) dr
4xrp ax r fo

F = 0
1 a

G - ' rXo(t - r)dr
47rp-5 x3r o

H - j rXo(t - r)dr
A-4r p 8- r o

details are given by Aki[1, pp. 71].

Evaluation of the volume integral in Eq 2.22 given by

reviewed in Sato [36], gives a compact result, replacing the

by introducing the intermediate functions defined as

00 = -F(t - -)r cs

(2.23)

Keilis-Borok (1950),

volume integrations,

(2.24)
1 r

0o = -F(t - - ) ,Ir cc



t s'
F(t) = Ids' oXo (s) d-Q

where Xo (t)

function, i.e.

#o are

is a source function. For a harmonic time dependence of source

Xo(t) = Xoewt, the Keilis-Borok's intermediate functions do and

4o(t) = " ew(*r/*)w2r # 0(t) = eiw(t-r/c.)w2r (2.26)

Using this notation, the volume integrations for displacement potentials in Eq 2.22

reduce to

1 a40
4rp ax1 '

F =0, G =: a
47rpaX3

It is pointed out that Eq 2.27 is equivalent to the result by surface integration in

Eq 2.23. Using the relation given in Eq 2.14 for the displacement components,

we obtain

u = V+ V x (F, G, H)

= V4+ V x V x (b1 , 2 , 3) (2.28)

where

S= 1 
47rp

1
47rp 02 = 0, 03 = 0 (2.29)

Similar expression may be found easily when the forces are applied in X2 and

X3-directions. The radiation field due to a force in an arbitrary direction also

can be found by superposition of the decomposed force components in the X1 , X2,

and X3-directions.

The above results are remarkably simple, and will be used subsequently to

formulate the field expressions for higher order sources.
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Figure 2.3: Decomposition of single couple into two body forces.

2.3 Single Couples

Potentials for single couples can be found by combining the single forces previ-

ously formulated. Instead of the force source function Xo(t), the seismic moment

Mo(t) is used hereafter for representation of higher order sources, so that the

definitions of 0 and 00 are

S= F(t -) , 0= -F(t - -) (2.30)
r cc r es

F(t) = j ds' f Mo(s)ds (2.31)

where Mo(t) is a moment source function.

The first single couple in the Fig 2.5, for example, can be generated by

combining two xi-direction single body forces, of which formulations are given

previously. The displacement potentials for the single couple in the Fig 2.3 are

38



easily found to be

1 a209

47rp aX3aX1

F = 0 (2.32)
1 82 o

4irp axz
1 82tpo

L=
47rp 8X2 aX3

The displacement can now be written in compact form as

u=V4 +VxVx(# 1,,0) , (2.33)

where the potentials are

1 a209 1 aO9
1=, #1 = . (2.34)

47rpx 3aX1  4xp8za

For the second single couple in Fig 2.5 with forces parallel to the X3-axis, the

potentials are

1 a209

47rp azXaX3
1 d2 99

F =- - - (2.35)
47rp 8x 28X1
1 82;9

G =
47rp azi

L =0 .

Again using a compact form, the displacement is

u= V +V x V x (,, 3) (2.36)

where the potentials are

1 8200 1 d 0
4 = , 0 3 =- . (2.37)4xrp az18a 4rp ax1
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Figure 2.4: Nine single couples.
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These single couples are exactly same as the example (Fig 2.2) discussed in

Chapter 2.1 with different notations. The single couples in Eq 2.34 and Eq 2.37

correspond to the first and second terms in the curly bracket in Eq 2.7.

Potentials for the nine single couples (Fig 2.4) that are required to obtain

equivalent body forces for a generally oriented displacement discontinuity are

summarized below.

1 a21 O4
(1,1) 4 = 724, a1x=,47rp axi 4irp x'i

1 824, - O1
(1,2) 4 42 , 01 = ,

47rp 8X28ij 47rp Bx 2
1 a201 0

(1, 3) 4 = ,~ #1 -=,) 47rp s i 01 47rp OX3
1 a20(2,1) 4 =, 1 = ) 0, 2=

47rp 4x 18x2
1 a200

(2,2) 4 =- 2 , #1i=0, 12 =-
4rxp 2 A7

1 a24,
(2,3) 4 = - 24, 01 = 0, 02 =

(3, 1) 0 = , - 1 = 0, 02 =
Air p ax1,z 9r

(3, 2) 0 = , 1 46 1 = 0, 02 =47rp x28x3

1 a82,(3,3) 4 1 2 , 1 = 0, 02 = 0,
Airp xz.'

b2 = 0, #3 = 0

02 =0, 13 = 0

02 = 0, 413 = 0 (2.40)

1 01o,
41rp ax 1

1 -0,

47rp 9X3 '

-, r3 =-01 03=

03 = 0 (2.41)

43 = 0

03 = 0
1 00

47rp Ox1
1 a00

, s 47pX47rp x 22

4rp Ox3

Using the single couples, the expression for a moment are found. For exam-

ple, the x-component for a moment is a superposition of (3,2) and negative

of (2, 3). As expected, the compressional part vanishes, while only the shear

potentials remain.

(2.38)

(2.39)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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Figure 2.5: Decomposition of a double couple into two single couples.

2.4 Double Couples

The displacement for the double couple in Fig 2.5, which is a equivalent body

force for strike-slip with dip angle 6 = 0, is simply a superposition of two single

couples derived in previous section,

u=V4+VxVx(# 1,, #3) , (2.47)

where the potentials are

1 82q0 1 4 0 1 0
O= - , 20 01 = , 3 = - -27rp gx1Bzs 47rp cx 3 47rp axi

(2.48)
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Figure 2.6: Strike-slip with dip angle 6 = 0 (a) fault surface and slip motion (b)
equivalent body forces.

2.5 Summary of Equivalent Body

Seismic Sources

Strike-slip

The double couple, which is an equivalent body force for strike-slip with dip

angle 6 = 0 (Fig 2.6), is simply a superposition of two single couples (1, 3) and

(3,1), giving the following displacement potentials,

1 a 2
0

27rp axiaX3
,1 #1 0
47rp ax 3

, #2 = 0 , 3 1 =- 0
47rp axi

Dip-slip

The displacement potentials for dip-slip (Fig 2.7) with dip angle 6 = 0, is a

superposition of two negative single couples (2,3) and (3,2) in Fig 2.4, where

Forces for

(2.49)

q
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Figure 2.7: Dip-slip with dip angle 6 = 0 (a) fault surface and slip motion (b)
equivalent body forces.

the potentials are

1 8 2 0

= pX 2 aX3
1b, , 12 = ab

4rp ax3

13 = 14 0
47rp ax2

. (2.50)

The representation of shear seismic sources in rectangular coordinate system

has been reviewed for certain direction of fault surfaces using Keilis-Borok's

compact results. The more complete formulations, using the nine single couples,

in rectangular coordinates for general shear fault surfaces with fault orientation

parameters(Fig 3.2) such as dip angle(S), rake angle(A), and strike(4.), are

found in Aki [1, pp 117-118] . The corresponding representation in cylindrical

coordinates will be given in Chapter 3.2.

Tensile crack

The equivalent body force for a tensile crack can be obtained by superposing

three single couples without moment, i.e. (1, 1), (2,2), and (3,3) in Fig 2.4, but
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Figure 2.8: Tensile crack with dip angle 6 = 0 (a) fault
equivalent body forces.

surface and motion (b)

with different magnitude of seismic moment. Considering the fault surface with

dip angle b = 0 (Fig 2.8), the direction of fault motion is in z-direction, so that

the magnitude of the single couple (3,3) will be A+A2 Mo, while the other two

components are Mo. The potentials for tensile crack shown in Fig 2.8 are then

1 920$0  1 g2~001 82 2
4xrp aix M=Mo 47rp ax2 M=Mo

1 9o
47rp axi M-M 0

1 a4fo
4xp ax 2 M-MO

1 4#0
47r aX3 M- A 2

1, Mo

1 a200
2

47p xsM=A Mo

(2.51)

The potentials for explosive source can be found by taking same magnitude

in 3 single couples without moment, yielding only compressional potentials.
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Chapter 3

Field Representation in a

Laterally Stratified Medium

Previously, in Chapter 2, the displacement field in a homogeneous isotropic

medium excited by various kind of sources, such as forces, single couples, mo-

ments, double couples which corresponds to shear fault motion, and body force

equivalents to tensile crack opening, has been discussed in Cartesian coordi-

nates. In this Chapter, the field representation in a laterally stratified medium

is considered based on global matrix method. First, the homogeneous solution in

cylindrical coordinates is presented in Section 3.1, since, in a range-independent

medium, two integral transforms in x and y in rectangular coordinates are re-

duced to a single integral transform in r in cylindrical coordinates Then, in

Section 3.2, the displacement potentials in the previous section will be trans-

formed to represent the dislocation sources with arbitrary dip angle 6 = 0.

These potentials are, again, transformed into cylindrical coordinates. In cylin-

drical coordinates, strike angle (0, in Fig 3.2) can be accounted for by rotation in

azimuthal angle. Since the homogeneous and source terms are in the same form

of representation via Fourier decomposition in azimuthal angle 0, Hankel inte-
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gral transformation in r, and finally the depth-dependent exponential form with

unknown coefficients, a set of linear equations can be established by matching

boundary condition at interfaces, for each discretized horizontal wave number of

Hankel integral representation and, for each Fourier order of 0, which is treated

in Section 3.3. In Section 3.4, the solution field parameters of interest such

as stresses and displacements are found by inverse Hankel transform and then,

adding all the Fourier components. Also, the numerical aspects, concerning the

inverse Hankel transform are discussed. Finally, some numerical examples are

given in Section 3.5.

3.1 Homogeneous Solution to Wave Equation

in Cylindrical Coordinates

The homogeneous solutions to wave equations in cylindrical coordinates are rep-

resented in terms of three scalar potentials, which are related to the displacement

in the following way[38],

u = V4 + V x V x (0,0, A) + V x (0,0,#) (3.1)

The scalar potentials satisfy the following homogeneous wave equations,

(v2 + h2) 4 = 0 (3.2)

(V2 + k2) (A, tb) = 0 (3.3)

The potentials are expanded in Fourier series in the azimuthal angle 0, as

0[ cos m 1
k(r, 0, z) = E ' (r, z)

m=O sin m J
-o cos m 1

A(r,0, z) = E Am (r, z) (3.4)
m=o sin mO



* sin mO
V) (r,0, z) =(r, z)

m=O -cos M J

By insertion of Eq 3.4 to Eq 3.1, it can be shown that the displacement compo-

nents are similarly expanded as

[0cos m 1
w(r, 0, z) = E wm (r, z)

m=O sin m]

0cos m 1
u(r, 0, z) = E um (r, z) (3.5)

m=0 [sin mO

00 sin mO
v(r,6, z) = Z vm(r, z)

m=O - Cos M J
Substitution of Eq 3.4 into the wave equations 3.2 and 3.3 results in ordinary

differential equations for the expansion coefficients in Eq 3.4 after Hankel trans-

form in range [38]. The ordinary differential equation with respect to z is solved

to give the exponential form in the square bracket in the following equation 3.6,

which represent the up-going and down-going waves, with the following integral

representations for m-th order potentials.

5m(r, z) = af00 [a(s)e ) + am (s)ez(*)] sJm(rs)ds

Am(r, z) = j [b (s)e-"z(') + bm (s)ez3(8) Jm(rs)ds (3.6)

ipm(r, z) = c00 C(s)e-z#(8) + cm(s)ez,6(a) sJm(rs)ds

In order to match the boundary conditions at the interface, it is necessary to

find the field parameters such as displacements and stresses. The constraints at
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the horizontal interfaces between 2 solid media in welded contact involve :

w

U

V

oZZ

aorz

COZ

z -direction displacement

r -direction displacement

0 -direction displacement

normal stress in z -direction

shear stress in r -direction

shear stress in 0 -direction.

When one or two of the media joining at an interface are liquid or vacuum,

some of the constraints will be no longer effective. These boundary conditions

are used to determine the unknown constants which are functions of horizontal

wave number s, such as a1 (s), a 2(s), bi(s), b2 (s), c1 (s) and c2(s).

Using Eq 3.6 and the relation between the displacement and displacement

potentials, Eq 3.1, the field parameters given above can be shown to be [38]

Wm (r, z)

Um(r, z) ± vm(r, z)

r00 --aM (s)a(s)e-"(-) + a'(s)a(s)e"(8)= s Jm (rs) ds
= ~ +b (s)se-"#(') + bT(s)sez(')

7-am(s)se-"(s) :: am(s)se**a(')

= j ±bm(s)#(s)e-z(') T bm(s)#8(s)e"#(8) sJm±(rs)ds

+c(s)se- + c(s)se( )

a'm(r, z) = AV 2 0m(r, z) + 2p aWm(r, z)

/ oo am(s) (2s 2 - k 2)e-a(g) + am(s) (2s 2 - k 2)eZa(6)

0 -bm(s)2s#3(s) e-"#() + bm(s)2s3(s)ez(s)
sJm(rs)ds

(3.7)

U,." (r, z) ± a,"'(r, z) = y [u"(r,z) ± V"(r,z)] + ( wm(r, z)

_- __-, -. M I - -
-a



±aT(s)2sa(s)e-z'(*) F am(s)2sa(s)ez"('9)

= 0 F -bm(s) (2S2 - k 2 )e-(8) :F bm(s)(2s 2 - k2 )ezl(") sJm 1(sr)ds

-c(s)s#3(s) e-z0() + cm(s)s3(s)ezfl(8)

In the above equation 3.7, it is noted that the shear displacements and stresses

are added and subtracted giving the Hankel transform for a single order of Bessel

function, i.e Jm+l for addition and Jm-1 for subtraction, respectively. Otherwise,

the shear displacements and stresses in certain directions will involve Bessel func-

tions of two different orders, which greatly complicates analysis using a linear

system of equations. This is an essential manipulation in order to be able to ap-

ply global matrix approach. The homogeneous solutions to the wave equations,

and corresponding displacements and stresses have been given. The coefficients

are later found by matching the boundary conditions for a given excitation. In

the following section, the source potentials are transformed into the cylindrical

coordinate system to have same form of representation as homogeneous solutions

found in Eq 3.6.

3.2 Seismic Source Green's Function in Cylin-

drical Coordinates

The displacement potentials for various sources given previously needs to be for-

mulated in cylindrical coordinates with the same form of Fourier decomposition

in 9-direction as applied to the homogeneous solutions in order to set up a global

linear system of equations expressing the boundary conditions. For strike-slip,

the derivations are given rather in detail, while only the results are given for the

dip-slip and tensile crack.
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Figure 3.1: Fault motion with dip angle 6, (a) Tensile crack, (b) dip-slip, (c)
strike-slip.

3.2.1 strike-slip

The displacements in terms of displacement potential given in Eq 2.49 will be

first transformed into a strike-slip with dip angle 6.

Denoting the original coordinates system (Xi, X2 , X3 ) and using a following

transformation (Fig 3.1), the strike-slip has dip angle b in the coordinate system

(x, y,z)

1 s a
27rp cx (_ y + &sOz

- -sin 6-+ cos6- 0  (3.8)
47rp (y az

Oy 1 si 6a0

--coso .47r p ax

a



Again, the potentials in the rectangular coordinate system (X, y, z) needs to be

transformed into cylindrical coordinate system (r, 0, z). Note that the relations

between the displacements in two coordinate systems, for example, are

Ux = U,. COS 0 - up sin 0

UY = ur sin 0 + u cOs O (3.9)

uz = uz

The partial differential operators can be found using the chain rule,

(coOA sinO- .= ccOo aax or r 80

-= (sinO- -a (3.10)
ay j r + r ao

a=_

Using the relations in Eq 3.9 and 3.10, the potentials are found as follows. The

displacement expression equivalent to Eq 3.8 in cylindrical coordinates is

u=V4+VxVx(0,, ie, ,z) , (3.11)

where

1 a2 a a 2
= -sinb sin 20 2 -C2cos b cos6 4 - 0

4 p ar2  rar) raz

r = sin sin 26- + cos b cos -a o (3.12)4xp ar az

Pe = 1sin 6 cos 20 + 2 cos b sin 0'- 0
4-p azj

1 ___

0,= 1cos 6cos 0 .
41r p ar

The potentials, do and fo, can now be expressed as

00 - Mo 1 eiw(t-R/ce)
w2 R



2 e Jo (sr)e-"I"~"'I ds (3.13)
W Jo a

00 MO ,wt J0 Jo(sr)e-PIZ-ZII.Sds

using the Sommerfeld-Weyl integral [45, pp. 13]

e-ihR 00
= Jo(sr)e-I'l-ds (3.14)

R o a

where a = (h2 _ S2)1/2fors2 > Re(h 2) , and j(h 2 _ S2)1/2fors 2 < Re(h 2), Jo

is zeroth order Bessel function, h is medium wave number, R is \r2 + z2,

and s is horizontal wave number. It is noted that z in Eq 3.13 is replaced by

z - z, to account for the source depth z,, accordingly the definition of R is

R = r2 + (z - z,) 2 .

Finally, substitution of the above Eq 3.13 into Eq 3.12 yields the potentials

of strike-slip with an arbitrary dip angle 6 of the same integral form as the

homogeneous solution (note that ' is defined as sign(z - z,) in the following

expressions) :

Moiwt sin6sin20s2J 2(sr) _ jZZIISds

4xrpw 2  0o 2cosbcos 0saJ1(sr) a

A iwt r sinbsin20sJ1(sr) e6IZZ ds (
-r 2- }ds (3.15)47rpw2  Jo cos6cos OgJo(sr) ]

M oo0 sin b cos 20sJi(sr)'ke = - e oe-ZZI.ds
4xrpw2 fo + cosobsin 0 PJo (sr) P

2 eiwt j coscosOsJi(sr)e-Al"-'' "ds
4x pu fo 0

Unlike the homogeneous solution, the potentials 4, O,14, k,,bz rather than 4, A, V@

are used in particular solution, since the particular solutions are found by trans-

formation of the rectangular coordinate formulation to give, naturally, the cou-

pled potential representation. while the uncoupled homogeneous solutions are
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found from the separated, uncoupled wave equations. The expressions in the

same form as the homogeneous solution, 4, A, and 0, can be shown to be

M __ Wt M0 sin b sin 26s2 J2(sr) 1 ds
47rpw2  Jo -2 cos 6 cos OgsaJi(sr) J a

MO eiW sino cos Os 2s2
8k

2 J (sr) 1sA = 4i f coj e2' #'sds (3.16)

Mo oo [ cos 6 sin et#LJ1 (sr) 1
$ = pw ew 2j ePj-jS -ds

4+pw2  0 +sin bcos 2k 2 J2 (sr) J
For the purpose of formulating the boundary conditions at the interface, the

displacements and stresses can be calculated from either of potentials in Eq 3.15

and 3.16.

3.2.2 Dip-slip

The potentials for dip-slip are similarly,

4 = ~- e j

=O - eWt f0
4xrpw2

O,. = 2 ew
4xrpw fo

O =iWt -

47rpw 2 0

0.5 sin 26 {cos 20s2 J2 (sr)

+(2a 2 + s2)Jo(sr)} e~"

+2 cos 26 sin 0 gsaJi(sr)

sin 26 sin OsJ1(sr) ]
-cos26tJo(sr) J

cos26 sin OsJ1 (sr) 1 efizzII-S ds

+sin26gsJ1 (sr)

Referring to Fig 3.2 , strike-slip corresponds to the fault motion with the rake

angle A = 00 , and dip-slip to A = 900. Therefore, the fault motion with a rake
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Figure 3.2: Definition of fault orientation parameters.

angle A is a superposition of the potentials for strike-slip and dip-slip multiplied

with cos A and sin A , respectively. The strike angle can be incorporated easily

in cylindrical coordinates by replacing the azimuthal angle 0 by 0 - 4, .

It has been shown that the general shear fault motion in cylindrical coordi-

nates can be formulated by simple coordinate transformation. Same procedure

will be applied to tensile crack.

3.2.3 Tensile Crack

The tensile crack in Fig 3.1(a) is a superposition of three single couples. Since

the cylindrical coordinates are used, the potential of a single couple in Fig 3.3(a)

can be used to express the remaining two single couples by coordinate transfor-
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Figure 3.3: Single couples used to represent tensile crack with dip angle b and
strike angle 4, = 0, (a) (1,1) with Mo = 1, (b) (2,2) with Mo = 1, (c) (3,3) with

m A+21AMo = A *.

mation.

The potential of the second component is obtained by replacing 6 in the

potential of first single couple with 6 + 90*. The third potential is obtained by

rotating the first single couple in azimuthal angle 90* with 6 = 90*. So that, the

formulation of potential for tensile crack is

3

= 0j4'(r,6O, z; 6k, Mk)
k=1

3
,.= O (rekz;SMk) (3.18)

k=1
3

#ke = Z (r,ok, z;6 S, Mk)
k=1

3

O = Z '(rOk, z; 6k, Mk)
k=1



where the potentials for the first single couple (Fig 3.3(a) are

Moe1wt [00

4,7 t.1

Moe i*)
47rpw2

- Moe**j

- MOeiteWt
47rpw2

2~i~ ei"
Z 47rpo 1

I

,00

00

fo 0

{-0.25(s2 - 2a 2 )

+0.25 cos 26(S 2 + 2C 2)} Jo(sr)

- sin 26 sin dgasJ (sr)

-0.25(1 - cos 26) cos 26s 2 J2 (sr)

-0.5 sin 26 sin OJJo (sr)

+ {0.25(1 - cos 26s) e

-0.25(1 - cos26) cos 28s} Jo(sr)

-0.5 sin 26 cos Og3Jo(sr) -PIZ-Z
+0.25(1 - cos 26) sin 2s Ji(sr)

0.5(1 + cos26)g#Jo(sr) eIZZ~I2S ds

-0.5 sin 26 sin sJi (sr)

and, the seismic moment Mo = AA, where A is the fault area and ;a is the

average normal displacement to the fault. The formulation for a tensile crack

with an oblique strike angle is obtained by rotating the azimuthal angle by strike

angle 4, in the above equation. Since the particle displacement is normal to the

fault surface in tensile crack, the rake angle can not be defined.

57

e Z ds
a

Z'I Sds

. ds
'3

(3.19)

p



3.3 Global Matrix Approach

Next step is to find the unknown coefficients in Eq 3.6. Denoting the set of

constraint variables for each Fourier order m as

Wm( 8 , z)

Um(S, z) + Vm(S, z)

Um(s, z) - Vm(s,Z) (3.20)

FOm(s z)
o;(s, z)o,(,z

um(s, z) - in (s, z)

the boundary condition for welded contact at interface n separating layers n and

n + 1 is

F"(s,zn) + F"(s, z,) - F'"+1 (s,0) - F"' 1 (s,0) = 0, (3.21)

where subscript n denotes the layer number, z, is the thickness of layer n, and

the terms with tilde ' ~ ' denotes source terms. Eq 3.21 gives a set of linear

equations for each interface. These sets of equations for each interface, when

combined, form a global matrix system, which is solved numerically. To be more

specific, the boundary condition can be rewritten as

An,,B" - An+1,B"' = R - R (3.22)

where the coefficient matrix A for upper interface is

-a

-s

(2s 2 - k)ti

2say

-2say

8 0

-#P
-2sp

-(2s2 - k2)A

(2 s2 - k2)p i

'5

0

-S~P
-S~P

a

-s

S

(2s2 - k2)A

-2say

2sap L

.5

2s#p

- (2s2 - k2)A

(2s2 - k2),

An,u =

0

s

0

(3.23)
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and the matrix for the lower interface is obtained by multiplying with the ap-

propriate exponential matrix, i.e.

An,1 (s) = An,(s)In(s) (3.24)

where

In(s) = diag { e-a(s)zn , e-#(S)Z. , e-#(8)Z. , ea(8)zn , e#(S)Zn , e(S)z" } (3.25)

It is noted that the coefficient matrix is independent of Fourier order m, which

is important for the efficiency of the numerical code since the multiple right

hand side due to Fourier orders in global matrix can be solved simultaneously,

as will be discussed in the next section 6.3. The unknown variables matrix in

the potentials is

B"(s) = {ag(s) , br"(s) , cm (s) , a;"(s) , bm (s) , cm",(s) T (3.26)

The source matrices R" will be calculated from potentials using constitutive

relations for displacements and stresses for different types of sources. The source

matrix for tensile crack is given below and other source matrices are included

in the appendix. The following source matrices are found from the potentials

in Eq 3.18 using constitutive relations for displacements and stresses, which are

found in Eq 3.11 and 3.7. For cos 6 and sin 26 Fourier orders, the source matrices
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vanish. For order m = 0 ,

{0.25g(s 2 - 20 2 ) - 0.25g cos 26k (s2 + 2 2)1 e-alz-z,1

+0.25g(1 + 3 cos 26ks2e-pIz-z,1

0.25} {(s2 - 2a2 ) - c (S26(s2 + 2 2 )} e-alz-z1

+0.25(1 + 3 cos 2bk)#lse-61z-z-

-0.25 - {(s2 - 2a 2) - cos 2 6k (s2 + 2a 2)I e-alz-z,\

-0.25(1 + 3 cos 26k)#se-pj~-zzl

-0.251 {(s 2 - 2 2 ) - cos 24(s2 + a2)} e-alz-z,

-0.5pIs 2#(1 + 3 cos 26)e-#Iz-z*-

-0.5pg s {(s2 - 2a 2) + cos 264(s 2 + 2a 2} e-alz-zI

-0.25pgs (s2 + #2)(1 + 3 cos 26k)e-P1I-z-l

+0.5pgts {(s 2 - 2C 2 ) - cos 2& (s2 + 2a 2} e-alz-z,\

+0.25pgs(s2 + ,32)(1 + 3 cos 26)e-PI-z-I

(3.27)

For sin 0 order,

3 Mk sin 26k
= E 47rPW 2

k=2 R

ase-z-z,| - 0.5(s2 + #2) L-Plz-z,l

,2-ajzz, - s eI-pz-z,|

-gs 2 ,-ajz-z, + I2,-pz-zI,

-t.gs(s 2 + 2)e -az-z,| + .. s(s2 + f 2 )e-z-z,|

-2pas2e-al-z,1 + o.5up- (3#2 + S2 )e-P1I-zi

2pas2e-alz-z,\ - 0.50(8 4+ S2# + 2#33)e-Piz-z,1

RO 3 Mk

k=1 Pnw2

(3.28)

- =2mm -- .



For cos 20 order,

R2 M(1 - cos 26k)
k=1 4ipw 2

0.25ts2 e-zz,1 - 0.25ts2 e -izZi1

0.2583e-*lz-- - 0.25 8Le-"Iz-z-

-0.25!a-e-'z-z-| - 0.25 ~ se-fiz-z.

-0.25ps2(s2 + # 2)e-z-z.| + 0.5ps 2 e-pzz.\

-0.5Aps3e-aIz-z.1 + 0.5pt s3e-pi2z.

0.5psse-lzZ-. - 0.5p/p 2se-Z-Z.I

(3.29)

In the above matrices, Mk and 6k are defined as

M1 = M0 ,

M 2 = M 0,

M = pM,

61 = 90*,

62 = 6 + 900 , and

b3 = 6 ,

except that M 1 = -M when m = 2, cos 20 order. The

tensile crack formulation is an explosive source, where Mk =

Consequently, only the zeroth Fourier order component is

omnidirectional radiation.

by-product of the

Mol, for k = 1, 2,3.

non-zero, yielding

The local matrix in Eq 3.21 for each interface has been formulated explicitly

for the coefficient, unknown variables, and source matrices of tensile crack as an

example. Since the boundary conditions should satisfied at all the interfaces,

the local matrices are combined to form a global matrix (Fig 3.4). Although the

dimension of the global matrix is increased with the number of layers, it is noted

that the maximum band width of the global matrix is limited to constant value

18 so that a special band matrix solver can be used to improve the numerical

efficiency.

Once the unknown coefficients are found, the complete solution for each layer

is found by performing inverse Hankel transform, summing over Fourier orders

61

.a



Local system

An,1B' - An+1,nB'+ 1 = +,u- R 1

Global system

Figure 3.4: Mapping between local and global systems of equations (after
Schmidt and Jensen, 1985).

for azimuthal angle, and Fourier synthesis in time domain, as will be discussed

in the next section.



3.4 Field Representation in a Laterally Strati-

fied medium

3.4.1 Complete Solution

From the global matrix solution, the complete solution in horizontal wave num-

ber domain combining homogeneous and particular solution is found for each

discretized wave number. This complete solution in s-domain is called Hankel

transform integrand for each m-th Fourier order, Hm,

H"(s,z,) = F"(s,z,)+fF"(s,z,)

= An(s)B"(s,z,) +R"(s,z,) , (3.30)

where the subscript n is the layer number in which the receiver at z = z, is

located. Note that the integrand is not a function of r, but of the horizontal

wave number s. In order to find the field parameters, inverse Hankel transform

is performed on Hm"(s, z,),

H'(r, z,) = H"(s, z,)s Jm(r, s) ds

{ An(s)Bm"(s, zr) + Rm(s, z,) sJm(r, s) ds . (3.31)

I II

The first term I in Eq 3.31 is equivalent to the terms in the square bracket in

Eq 3.7, while the second term II corresponds to Eq 3.27- 3.29 for tensile crack,

except that they are now evaluated at the receiver depth z = Zr instead of at

the boundaries z = z,. Once the field parameters of interest for Fourier order

m in Eq 3.31 are found, the final solution is found from Eq 3.5 summing all the

Fourier orders.



The procedure of obtaining the complete solution in real space 1 has been

explained in detail. Essentially, the solution technique is quite analytical, until

the estimation of inverse Hankel transformation is introduced, which is done

numerically. The numerical evaluation of the integrals is important to the ef-

ficiency of the developed code. Therefore, the aspects of numerical integration

will be discussed in the next section.

3.4.2 Numerical Consideration

There are two numerical intensive steps in the solution technique, accompanied

by numerical stability and efficiency problems. One is the numerical stability

of the global matrix to be solved. This problem is treated in the previous

publication [39], and the numerical stability is ensured unconditionally with

proper scaling and arrangement of the coefficient matrix and partial pivoting

when solving the global system of equation.

The other is the inverse Hankel transform, which is estimated numerically.

The inverse Hankel transform can be basically estimated in two ways, FFT

and direct numerical integration. The FFT method is an approximation to

farfield with incident angle not so small, since the inverse Hankel transform

is reduced to the form of Fourier transform for large argument of the Bessel

function [12] [40]. The advantage of this method is the computational efficiency,

since the reduced Fourier transform is computed through FFT so that the results

are found at every range step simultaneously. The direct integration method,

however, requires the calculation of Bessel function, and the integration scheme

should be applied for each argument of the Bessel function. The advantage of

integration method is the accurate estimation of the field including the near

'to avoid confusion with the complete solution in horizontal wave number s-domain, i.e.

before inverse Hankel transform.



field, although it is computationally extensive. Therefore, this method can be

applied efficiently for the cases of a few receivers. While various techniques can

be used to increase the efficiency of the numerical integration for special cases

[2] [11] [19], the presently available methods in the code are FFT method and

direct integration methods using Simpson rule or trapezoidal rule with Romberg

scheme.

3.5 Numerical Examples

To demonstrate the solution technique, the radiation in a homogeneous un-

bounded medium from 3 different seismic sources are considered. These exam-

ples are chosen due to the simplicity, and the existence of the analytical solution

available at least partially, for such as radiation pattern.

Case 3.1 Tensile crack: The tensile crack is compact and located at the origin

with receivers at z = 60 m (Fig 3.6), giving the contour level of vertical displace-

ment. The fault orientation parameters are 6 = 900 and 0, = 00. The source

pulse to generate synthetic time series is given in Fig 3.5. Only the frequency

components between 0 - 300 Hz are considered.

Case 3.2 Dip-slip : The source and environmental parameters are same as the

case 3.2, except that the source is now dip-slip.

Case 3.3 Strike-slip : The source and environmental parameters are same as

the case 3.2, except that the source is now strike-slip.

In order to characterize the radiation from different sources, two types of

displays are used. One is the contour plot of a field parameter at certain depth,
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Figure 3.5: Source function (a) time series, (b) spectral shape.
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Compact fault surface at the origin

x-y plane at z=60 m V
for contour plot of Z
vertical displacement

Receivers at every 30 deg
along the circle for synthetic
time series

Figure 3.6: Sketch of coordinate system with source and receiver positions.

which shows the radiation pattern. The other is the synthesized time series for

given source function. These are discussed subsequently.

The contour plot of vertical displacement at z = 60 m for frequency 100 Hz

corresponding to tensile crack, dip-slip, and strike-slip sources at z = 0 m with

dip angle 6 = 90* in a homogeneous elastic medium are given in Fig 3.7, 3.9,

and 3.11 , respectively. The contour level is taken to be

CL = 20 logio |w| re 1 Pa. (3.32)

The source strength for the following examples is the unit seismic moment. As

expected from the source matrices, the Fourier orders excited by a tensile crack

are zeroth and second, cos 20 orders (Fig 3.7) , while only first order is excited



to give dipolar radiation pattern in horizontal plane for dip-slip (Fig 3.9) and

second order to give quadrupolar radiation pattern for strike-slip (Fig 3.11) .

It is noted that the radiation patterns for different seismic sources are quite

distinct for given receiver positions. However, the strike-slip can be obtained

by rotating dip-slip in an homogeneous unbounded medium, which suggests the

radiation pattern is obviously different depending on the receiver positions.

For the source time function in Fig 3.5, the synthetic seismograms for dif-

ferent types of sources are given in Fig 3.8, 3.10, and 3.12. The first arrival in

Fig 3.8 for tensile crack is the compressional wave, and the second arrival is the

shear wave. The amplitude of the compressional wave does vary slowly while

the shear wave amplitude vanishes for horizontal angle 0 and 7r. This is due to

the fact that the shear wave component of zeroth and second orders cancel each

other at these directions. The seismogram in Fig 3.10 for dip-slip with dip angle

b = 90 consists of only first Fourier order, as the radiation pattern (Fig 3.9)

suggests. For this case, the shear component is dominant and the compressional

component is barely seen. Also, it is noted that the phase between horizontal

angle 0* < 0 < 1800 are shifted by 180* giving negative phase. For strike-slip

with dip angle b = 90* and strike angle 4, = 0*, the second Fourier order is

the only contribution as in Fig 3.11. Again phases are alternating every 900.

Therefore, it is argued that the temporal characteristics, as well as radiation

patterns, of different sources can be used to identify the source parameters.

For above three cases in a homogeneous unbounded medium, the compres-

sional and shear wave arrival times agree with simple calculation

t = 0.085 sec (3.33)
cc

and

t, 0.170 sec, (3.34)
c,
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Figure 3.7: Radiation pattern of tensile crack with dip angle 6 = 90* for single
frequency f = 100 Hz in a homogeneous elastic medium.
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Figure 3.11: Radiation pattern of strike-slip with dip angle 6 = 90* for single
frequency f = 100 Hz in a homogeneous elastic medium.
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where r, and z, are the coordinates of receiver location. For the cases considered,

since the medium is unbounded, there is no dispersion of the existing waves.

However, when there wave guides are introduced by boundaries as in the case

of a floating ice plate in a central Arctic environment, the group velocity is

different from the phase speed of corresponding waves. These cases are discussed

in Chapter 6.



Chapter 4

Radiation from Propagating

Cracks

The excitation by a seismic source originates on the dislocation surface. Often,

the size of dislocation surface is approximately larger than a quarter of the wave

length of interested frequency, causing directivity pattern, as has been observed

in some earthquakes [17] . The directivity pattern is caused by the phase in-

terference introduced by the geometry of crack surface, and crack propagation

speed or, rupture speed in seismology. Obviously, when the seismic fault dimen-

sion is relatively small enough not to cause the phase interference, they can be

treated as point or compact sources.

In Chapter 4.1, the solution to a canonical problem of non-compact crack

radiation shows that the formulation of radiation pattern is actually the same

as that of an array of sonic transducers. Therefore, the developed model can

be also applied to the radiation from an array of sources as well as propagating

cracks. In Chapter 4.2, an efficient numerical model is developed for the radia-

tion and propagation from propagating cracks in a laterally stratified medium.

In the numerical examples section, the same canonical problem is solved using



L : Crack length

y

Figure 4.1:
system.

x
-'A 0

Al'

z

Discretized source distributed over the line crack and coordinate

the developed model, and the characteristics of radiated field from propagating

cracks are discussed.

4.1 Analytic Solution to a Canonical Crack Ra-

diation Problem

A canonical problem simulating the radiated field in an homogeneous unbounded

acoustic medium can be analytically solved, giving insights for the radiation in



a laterally stratified elastic medium. The fault surface 1 can be modeled as an

array of discretized sound sources as in Fig 4.1, where a line crack is considered.

The total pressure field with contributions from the sources can be expressed as

p(x, t) - [wo(t - -)L r c
Al Al' r Al Al' r

+wi(t--+---)+w 2 (t+ r)
cv C C e
Al Al' r Al Al' r

+W3 (t - -- + -l - -) + wa(t + )l-Al (4.1)
c, C C c( c c

where w,(t) is the source function of the i-th discrete source, L is the crack length

(array length), A is the source strength of an array, c, is the crack propagation

speed (phase velocity for an array), Al is the distance between the discretized

sources, and Al' is the distance between adjacent discrete sources to the receiver

(Al' = Al sin X cos(6 - 0d)). Assuming that each discrete source has the same

source function, the pressure field can be written as

A Al N nAl r - nAl'
p (x, t) = E W(( - -) - ).(4.2)

L r n=-N c, C

As can be seen in the above equation 4.2, there are two phase terms introduced.

The first term nAl/cv is the time delay taken for the crack tip to travel the

distance between discretized sources nAl. The second term -nAl'/c is the

time delay due to the different source location to the receiver positions. For

the limiting case of Al -+ 0, i.e. for the continuously distributed sources, the

expression in Eq 4.2 reduces to integral form

Al1 L/2 1 sin X cos (0 - Ga) rp(x,t) = -- w(t - ra( ) - -) dra . (4.3)
L r -L1/2 c, C C

'Even if there can not exist a fault surface in an acoustic medium, the fault surface denotes

the general surface over which the sources are distributed.



Defining
1 sin X cos(O - 4)e = - (4.4)

C1, C

the pressure expression can be written as

A 1 L/2r
p(x,t) = -f w(tE-ra - )dra

L r -L/2 c

A1r- r L
= 1 w(t - Era - ) rect (-)dra , (4.5)
Lr oo c 2

where the rectangular function rect( ) is defined as

rect( )={ 1, when |r<

2 0, otherwise

Using transformation, Era =,r,

A 1 L/2 r L
p(x, t) = -- = w(t- r - -) rect(-) dr

L r -L/2 e ( 2

Al 1 r 1 L
= -- w(t - -) * rect(-) . (4.6)

L r c 2

The rectangular box is the result of uniform source strength distribution along

the crack surface using farfield approximation. Of course, the source strength

function does not have to be a box type, it can be a triangle, or any kind of shape

that best describe the source strength distribution. Since the source distribution

function is not known, the rectangular shape is assumed for simplicity.

From Eq 4.6, it is seen that the signal observed at the hydrophone is the

source function convolved with the source distribution function, which is a func-

tion of B = E(Od, X, c.) as shown in Eq 4.4, so that the observed signal will be

different for different receiver directions. However, the area under the rectangu-

lar function remains constant for all the receiver directions.

Since the convolution in time domain corresponds to the multiplication of

two Fourier transforms in the frequency domain, it will be useful to look at

the frequency domain solution. In order to find the frequency domain solution,

76



the impulse source function is assumed i.e. w(t) = 6(t). The plot of frequency

domain solution is given in Fig 4.2 (b). The Fourier transform of a rectangular

function is sinc function (sinc(r) = sinr/r), so that the peaks and nulls as

function of r corresponds to the radiation pattern in the real space for certain

range of r, which is determined by the crack propagation speed and the ratio of

wave length to the crack dimension. In fact, the formulation is exactly same as

the radiation from the sonar, which makes the model applicable to the radiation

from an array of transducers, such as airguns or explosions.

The interpretation of the results for this canonical problem gives useful in-

formation about the spectral and temporal radiation characteristics. First, the

frequency domain solution shows that the spectral level at fixed receiver posi-

tion ( i.e. fixed E) is different for different frequencies, which is called frequency

dependent directivity. This is one of the characteristics that distinguishes the

non-compact sources from compact sources. The time domain solution in Eq 4.6

shows the convolution of source signal with different duration of rectangular box

depending on the receiver directions. These aspects of the frequency and time

domain solutions are discussed in the numerical examples Case 4.1, where the

same example is treated for a given source function using the presently developed

code.

4.2 Numerical Model for Propagating Cracks

in an Stratified Medium

The field caused by the moving crack can be basically found by integrating

the proper Green's function of the specific sources over the fault surface. This

method assumes that there is no scattering from the pre-existing crack surface,
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Figure 4.2: Fourier transform pair, (a) rectangular source strength distribution
function along the crack, (b) Fourier transform of -rect(ra).
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Figure 4.3: Sketch of moving crack.

i.e. the distributed sources over the crack surface radiate as if the medium is

homogeneous.

In order to treat the moving dislocation sources, it is necessary to place the

sources off the z-axis in Fig 4.3 , which has been studied in earlier development

of the three dimensional version of SAFARI code [38] . However, the mathemat-

ical treatment is rather complex and requires the calculation of higher orders of

Bessel functions causing convergence problem and numerical inefficiency. There-

fore, simple transformation of source and receiver position is used in this study.

The actual problem of distributed sources over the fault surface is reduced to

a numerical problem with one source on z-axis, and corresponding receivers for

each of the sources (Fig 4.4).

The total radiation field due to moving crack can be obtained by summing the
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Figure 4.4: Receiver-source position transformation (a) source distribution over
fault surface, (b) reduced numerical model.



fields at receiver positions. In order to apply transform-superposition method,

some considerations are needed. First, the Green's function of the source po-

sitioned on the z- axis has to be multiplied by a phase term due to traveling

crack speed. The phase difference introduced by a propagating crack consists of

two parts. One corresponds to the time delay for the crack to propagate from

one source position to another, and the other is a time delay due to different

source positions, as discussed in the previous section. Therefore, the total phase

difference, for example (Fig 4.3), caused by different source positions, r1 and r 2 ,

is

L +r21 - r1 (4.7)
ro = - +(47

Vr C

The second term is included in receiver-source position transformation. The first

term is a phase to be multiplied to the source Green's function. Secondly, when

the field parameters are added, another transformation to correct the receiver-

source transformation is necessary. This consideration is made to resolve the

farfield approximation for the array, i.e. the following requirement for farfield

approximation is not necessary

L < /r 2 +z z2 ,(4.8)

of which restriction applies to the analytical solutions.

For the case of the multiple depth sources (Fig 4.5), the same procedure

will be performed for each source depth. This is due to the fact that the ge-

ometry concerned is a laterally stratified medium, so that the source-receiver

transformation can be applied to horizontal direction only.



Figure 4.5: Two dimensional crack surface and source distribution.

4.3 Numerical Examples

Two canonical problems are considered in acoustic and elastic media. The media

are homogeneous and unbounded, so that there is no boundary effect. This will

allow us to look at the effects of non-compact sources. The source and receivers

of examples are explained in the followings.

Case 4.1 Radiation from an array in a homogeneous unbounded acoustic medium

: The line array is extended from (-25,0,0) to (25,0,0) m, traveling at speed

c, = 1800 rn/sec., while the sound speed in the acoustic medium is c =

1440 rn/sec. The source type is explosive source (monopole). Refer to Fig 4.3.



Case 4.2 Radiation from a propagating crack in a homogeneous unbounded elas-

tic medium : The crack is assumed to be a line crack with a element Green's

function being a explosive source, extending from (-25,0,0) to (25,0,0) m. The

crack travels at c, = 1800 m/sec, and the compressional and shear speed of the

medium are c, = 3500 m/sec, c, = 1800 m/sec, respectively.

Two types of displays are used to visualize the radiated field. For Case 4.1,

the contour plot for xy-plane at z = 60 m ( Refer to Fig 3.6 ) and the synthetic

time series at range 300 m are given in Fig 4.6 and 4.7, respectively. In Fig 4.6,

the major lobe direction 0m due to steering, that is due to propagation speed,

can be calculated simply by Snell's law,

em = sin- 1 - (4.9)

1440\
= sin~1  1440 = 53.130

(1800

This major lobe corresponds to the peak of Sinc function in Fig 4.2 shifted by a

corresponding phase due to crack propagation speed, or phase speed of an array.

The synthetic time series in Fig 4.7 shows the major lobe effect in the direction

at ; ±600 on arrivals with high amplitude. When the higher frequencies with

the same crack dimension are considered, the steering effect will become more

obvious radiating the acoustic energy spatially in a narrower beam.

For Case 4.2, the elastic medium has two wave components, compressional

and shear waves. However, since the source is omni-directional explosive source,

the shear wave is not excited, which simplies the problem 2. The compressional

wave speed is 3500 m/sec, which is greater than the crack propagation speed

1800 m/sec, called subsonic crack speed. For this case, the steering angle, or

the major lobe direction Om can not defined in real space, i.e. em is imaginary

2 The shear wave excited by directional sources is treated in Chapter 6
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Figure 4.6: Radiation pattern for an array of explosive sources for a single
frequency f = 100 Hz in a homogeneous acoustic medium.
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in Eq 4.9. Therefore, the major lobe is not seen in Fig 4.8, and the directivity

pattern is not as drastic as Case 4.1 since the ratio of the compressional wave

length to crack length is greater than the previous case. This effect is shown

in Fig 4.9 with moderate changes in amplitude between channels compared to

Fig 4.7, which means the beam is broader spatially.



Chapter 5

Transversely Isotropic Medium

In this Chapter, it is shown how the global matrix method can be applied to the

formulation of propagation in a transversely isotropic medium. A transversely

isotropic medium is characterized by five independent elastic constants. Often,

the situation occurs when the periodically repeated finely layered sediment, or

the sea and lake ice are considered.

Since the theory for the wave propagation in a transversely isotropic medium

is well established [3] [13] [14] [15] [20] [26] [27] [28], the emphasis is given on the

application of global matrix method to a transversely isotropic medium. First,

the equation of motion is presented in cylindrical coordinates. The equation of

motion is no longer expressed as a wave equation, as in the case of an isotropic

medium. Then, the equivalent transversely isotropic elastic constants for pe-

riodically fine layered medium are summarized. By introducing intermediate

functions, the decoupled equations are formulated for SH and SV - P waves.

These functions are utilized to express the boundary conditions at the interfaces

in a form compatible with the isotropic case. It is noted that, in order to set up

a system of linear equations, the intermediate functions need to be arranged as

the potentials in an isotropic medium, which is discussed in Section 5.4.



5.1 Equation of Motion

The equation of motion in cylindrical coordinates is [43, pp.219]

82u 1
p at2= pF + (div Ur , div a , div a ) + (-4 , r., ). (5.1)

For an isotropic medium, the above equation 5.1 reduces to Eq 2.8 using the

stress-strain relationship with two independent elastic constants A and p. In

the following sections, the general equation of motion 5.1 will be further sim-

plied for a transversely isotropic medium to a system of equations with the five

independent elastic constants, which decouples for P - SV and SH waves by

introducing a set of proper intermediate functions, f.

5.2 Stress-Strain Relation

The stress-strain relation in

e,,.r C11

C12

Ozz C 13

Oqoz 0

zr 0

Urw C 0

where C12 = C11 - 2C66. TI

cylindrical coordinates is

C12

C11

C13

0

0

0

he
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C13

C33

0

0

0

0

0

0

2C 44

0

0

expressions for

0 0 Err

0 0 E,,o 0 EZZ (5.2)
0 0 I4O

2C 44  0 Ez,

0 2C 66  E,

strain in cylindrical coordinates
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or ' r a4 r fz az
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(5.3)
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Figure 5.1: Sketch of a periodically finely layered medium.

of which general relation in curvilinear coordinates are found in Takeuchi and

Saito [43]. For an isotropic medium, the stress-strain relation can be found by

substituting C11 = C33 = A + 2p, C 44 = C66 = ps, and C12 = C13 = A.

5.3 Equivalent Transversely Isotropic Elastic Con-

stants for Periodically Fine Layered Medium

The periodic finely layered medium described in Fig 5.1, when H is much smaller

than the wave length of the interested frequency, can be treated as an equiva-

lent homogeneous transversely isotropic medium. Consequently, the equivalent

elastic constants for a periodically finely layered medium with N homogeneous

----- ---------------- !Boom -----------
........................ .................................. .............................. 0- 0 ..................

...................------------------------------------------



layers (Fig 5.1) may be shown to be

C 44 = (p-1)-1

C66 = (p)

C33 =(5.4)

C 13 =

Cn =4(A) - 4(-yg) + (1 -

C 12  Cn - 2(.p) = Cn - 2C66,

where the angled bracket denotes the thickness-weighted average [41].

5.4 Decoupled Equations for SH and P-SV Waves

Returning to solving the equation of motion, Eq 5.1 can be reduced to the equa-

tion with respect to displacement u, first using stress-strain relation and then,

using strain-displacement relation as in Eq 5.2. While the three displacement

potentials, 4, A, and V), defined in Eq 3.6 and 3.4, that express the P, SV, and

SH waves respectively, can be defined in an isotropic medium, the potentials

cannot be defined for the equation of motion in an transversely isotropic medium

since the P - SV waves cannot be separated. However, a set of intermediate

functions, fi, f2, f, and f4, which combines the P - SV waves and f5 and f6 for

the SH wave, may be defined, since the P - SV and SH waves still decouple.

Therefore, the problems for P - SV and SH waves are solved separately.

In cylindrical coordinates, the solution to the propagation of P - SV waves

may be assumed as

w = f 2 (z;w,s)Yme iwt

= fi(z;w,s)- ae ej*

1 8 Ziwt

o = fi(z;w,s)- ae
s 

B

4



oaz, = fsY!(r,0) (5.5)

a.-=f4-s or
Uze = f4-

sr 86

where Ym is defined as

rcos me
Yk m - oJ . (5.6)

sin mO

For the SH wave, the solution assumes the following forms,

1 aY" w
u = f 5 (z;w,s)- es*

s 80

o= -f_(Z;WS)- eiwts or
U,, 0 (5.7)

Uzz, = f y--

s ar
1 ak

Uze Asr 80

where Y" in f5 and f6 is defined as

sin m6
k Y -=m[ (5.8)

-Cos mB

Comparing Eq 5.8 with 5.6, the different arrangements of Fourier orders for the

SV - P and SH waves are similar to those defined in Eq 3.4 in an isotropic

medium 1. Obviously, this is to enable the boundary conditions to be compat-

ible with the previous formulation in the isotropic medium. Substituting these

1The major difference is that the potentials for the isotropic medium represent the P, SV,

and SH waves fully separated, while the intermediate functions for the transversely isotropic

medium represent the coupled P - SV waves and decoupled SH wave.



equations into the equations of motion, it can be shown that

dfi 1
--=-Sf2 + -A

dz L
df2  kF 1

-= -- fi+-f3
dz C C
d = -pw 2f 2 + sf4 (5.9)
dz
df4  F2  sF

- -S [2 (A - -- - pus]f2 -F -f
dz C
df5  1
dz L
df6  (s2N - pw2

dz

The above equations are taken from the references [43] [29], and rearranged to

be compatible with global matrix method. As can be seen in the above Eq 5.9,

f,, for i = 1,...4 are decoupled from fi, for i = 5,6. The eigenvalues for the first

4 equations can be found from

4 k2 [A - pw2 Ik2L - pw2 _k2(F + L)2 2 + (k2 L -- pw2)(k2 A - pw2 )
L C CL CL

(5.10)

The four eigenvalues represent the up-going and down-going components of

quasi-P and quasi-SV waves. The two eigenvalues obtained from

2 Nk 2_ PW 2Nv2 = (5.11)
L

represent the up-going and down-going components of the SH wave. In the

isotropic case, vi and V2 corresponds to a and #, which are the vertical wave

numbers for compressional and shear waves, respectively. And, V3 corresponds

to # since the SH wave has the same wave number as the SV wave in an

isotropic medium.

In Eq 5.10 and 5.11, considering the vertical wave number v -. 0, in which

case the waves travel in the horizontal direction, the phase speeds are found to

_ _ _=34jhg ' _-Om



be VC11/p for P wave and C44 /p for SV wave, and NC 6 6 /p for SH wave,

respectively. Now, considering k -- 0, in which the waves propagate in the

vertical direction, the phase speeds are C 3 3/p for the compressional wave P,

and C44/p for the shear waves, SV and SH.

Once, the eigenvalues and eigenvectors are found, the homogeneous solution

to Eq 5.9 can be written

f = EAK, (5.12)

where E is the eigenvector matrix of Eq 5.9, A is a diagonal matrix for eigenval-

ues, and K is a unknown coefficient matrix for six components of up-going and

down-going P, SV, and SH waves, respectively. They are written as follows,

1 1 0 1 1 0

-11 -12 0 11 '2 0

E = X 1  X 2  0 X1 X 2  0 (5.13)
Y1 Y2 0 Y1 Y2  0

0 0 1 0 0 1

0 0 -C 44v3  0 0 C44v3

A = diag {e~"1Z , e-2Z, - , , e-2z , ev3Z (5.14)

K={a , b' , c' , a' , b' , c' , (5.15)

where -gy, X;, and Y are defined as

ku, (Ci3 + C44)
' pw 2 - k 2 C 44 + v2C 33

X = CS3vi-Y - kC 13  (5.16)

Yi =C44(Vi+ k-i) .

It is noted that A, K and E correspond to I, B and A for the isotropic case in

Eq 3.25, 3.26, and 3.23, respectively. As in the case in the isotropic medium,



the E matrix is independent of Fourier order m, while the unknown coefficient

matrix K has to be found for each orders of m. However, note that the f matrix

is an intermediate set of functions like potentials in the isotropic medium. In the

next Section, the intermediate functions are combined to represent the boundary

conditions used in the interface in the global matrix method.

5.5 Formulation of Boundary Conditions Com-

patible with Global Matrix Method

The boundary conditions at the interfaces (Eq 3.20) are formulated based on

Eq 5.12, which is a form of homogeneous solution in a transversely isotropic

medium.

wm(r, z)

Um (r, z) + v"(r, z)

um (r, z) - vm(r, z)

a,"(r, z)

am (r, z) + az4(r, z)

Oam (r , z) - az, (r, z)

explicit expression for f

1

X1

-Y

0

0

1

x2
X2

-Y2

0

0

0

0

0

0

1

-C44V3

= j f2sJm(rs)ds

= (-fi + f5)sJm+1(rs)ds

= f(fi + fs)s Jm-1(rs)ds

= fsJm(rs)ds

= j(-f" + fe)sJm+1(rs)ds

= j(f4 + f)s Jm-1(rs)ds.

can be calculated from Eq 5.12

1 1 0 ajj(s)e-zV1(8)

I12 0 bm(s)e-zv2()

X1 X 2  0 cm (s)e-Zv3(s)

Y1 Y 2  0 a2"(s)ez"(s)

0 0 1 b"(s)ezv2(8)

0 0 C 44v3 c"(sezv3(s)

where the

fi

f2

f3

f4

f6

f6 ,

(5.17)

(5.18)
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Figure 5.2: A single force as a source.

In the implementation of the numerical code, the eigenvectors are scaled in the

same way as the coefficient matrix A in Eq 3.23 for the isotropic medium for

compatibility.

5.6 Numerical Examples

One of the most characteristic features of the wave propagation in transversely

isotropic medium is the separation of the SH and SV waves depending on

the direction of propagation. The separation is maximized generally for the

propagation in the horizontal direction, as can be seen in the slowness diagram

in Fig 5.3 which has been computed for the Case 5.1. In order to see the

separation, the source needs to excite the SH wave, of which sources include



OASTL SLOWNS
Layer: 2
Cr: 1000.0 m/s

0.2 0.4 0.6 0.8

Norm. horizontal slowness

Figure 5.3: Slowness surface of P(solid line), SV(dotted line), and SH(dashed
line) waves for case 1.

forces, or couples with Fourier orders greater than the zero-th. For simplicity,

a single force in an unbounded and homogeneous medium 2 is considered in the

following examples.

Case 5.1 Transversely isotropic medium The transversely isotropic medium

considered consists of two isotropic layers, which are repeatedly fine layered.

For the first and second layer, the compressional wave speeds are 4000 and

2000 m/sec , and the shear speeds 2000 and 1000 m/sec , respectively. The

density are 1 g/cm3 for both layers. The point force is placed at the origin and

the direction of the force is to the horizontal angle 30*, and the vertical angle is

2 Since the presently developed codes can not have a source in the anisotropic medium, an

infinitesimally thin isotropic layer is placed at the depth of source.
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600 towards the z-axis as shown in Fig 5.2. The 12 receivers are placed at every

30* at depth of 60 m and range of 300 m, as in Fig 3.6.

Case 5.2 Isotropic medium : In this example, the isotropic medium is consid-

ered. The other parameters are the same as previous Case 5.1, except that the

compressional and shear wave speeds are 3000 and 1500 m/sec, respectively.

Through these examples, the propagation effects in a transversely isotropic

medium are discussed. The slowness surfaces show the varying phase speeds

depending on the propagation direction. For the horizontal direction, the waves,

P, SV, and SH, travel with different speeds, while for the vertical direction,

the shear waves, SV and SH waves, travels at the same speed so that the shear

waves does not separate. This can be demonstrated in the synthetic time series.

Again, the same source function in Fig 3.5 is used. The synthetic time series

of the velocities in z,x, and y-directions are shown in Fig 5.4 and 5.5 for the

cases 5.1 and 5.2, respectively. The comparison of the seismogram for Case 5.1

in Fig 5.4 with Case 5.2 in Fig 5.5 shows the separation of the SH and SV

waves, as expected. The separation time can be calculated using the receiver

directions from the slowness surfaces for SV and SH waves in Fig 5.3. Since

the receiver positions are almost horizontal, SH arrives faster than SV wave.

The relative strength of each modes of propagation as well as the propagation

speed in the horizontal direction can be also identified in the modulus plot of

the Hankel inverse transform integrand in Fig 5.6.

First, the equivalent five elastic constants can be calculated for the case 5.1

from Eq 5.4.

C44 = 1.6 x 109 , C6 6 = 2.5 x 109,

C3 3 = 6.4 x 109 , C1 3 = 3.2 x 109 , (5.19)

C11 = 9.1 x 109
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where the unit is Kg/m -sec2 . From these elastic constants and using the center

frequency of 100 Hz, the phase speeds and wave numbers for the P, SV, and

SH waves in the horizontal direction are found as

Cp = = 3162.1m/sec => s =- = 0.200
p Cp

CSV - = 1326.0m/sec => s = = 0.474 (5.20)
p CSV

CSH = C1 = 1657.5m/sec S = W = 0.379
pcs

For case 5.2, the phase speeds for all wave types are the same in all directions,

and the horizontal wave number can be calculated from the phase speed and

frequency,

c = cp= = 3000.m/sec -> s = 0.209
p

C, = CSV = CSH = = 1500.m/sec -> s = 0.419 (5.21)

Now, the moduli of the inverse Hankel transform integrand in Fig 5.6 can be

interpreted based on the horizontal wave numbers found from the phase speed of

each mode. The peaks at s = 0.419 and 0.474 in Fig 5.6(a) for the zeroth Fourier

order of vertical velocity represent the dominant SV wave in the isotropic and

the transversely isotropic medium, respectively. For the first Fourier order of

the vertical velocity in Fig 5.6 (b), the peak at s = 0.474 for the SV wave in the

transversely isotropic medium is observed, which does not exist in the isotropic

medium. The magnitude of the zeroth order is greater than the first order by

an order of 10, the directional variation in the horizontal angle is negligible in

the synthetic time series for the vertical velocity in Fig 5.4 and 5.5 (b) and (c).

The peaks at s = 0.200 and 0.209 in Fig 5.6 (d) for the first Fourier order shows

the P wave in the isotropic and the transversely isotropic medium, respectively.

Another peak at s = 0.379 is the contribution of the SH wave, of which peak

appears only in the transversely isotropic medium.
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Although the modulus of the inverse Hankel transform integrand is not the

final form of the quantitative field presentation, it gives the idea of what modes

of wave exist and are dominant. The previously given examples are, however,

the most simple cases without any boundaries, where the group velocity is the

same as the phase speed, and not dispersive. When there exists a wave guide, the

Hankel transform integrand can be very useful in identifying the phase speed of

existing modes along with the dispersion relation. These examples in relation to

the wave propagation in the floating ice plate in the central Arctic environment

will be discussed in Chapter 6.5.
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Chapter 6

Application to Ice Crack

Radiation in the Central Arctic

Environment

The main source of the central Arctic ambient noise has been known to originate

from the elastic motion of the ice plate caused by environmental stresses. When

the stress in the ice plate is locally greater than the strength of the ice causing

fracture, the stored energy is released in the form of elastic motion of the ice.

This energy radiates into the water, forming ambient noise when the events are

aggregated. In order to better understand the Arctic ambient noise generating

mechanism, two levels of approaches are being pursued [9]. One approach is

to correlate the spectral and temporal characteristics of ambient noise to gross

environmental parameters such as thermal changes, current and wind stresses

[331. The other level of approach is to look into the individual ice cracking events,

and treat them as a noise generating source element, which forms the average

ambient noise when aggregated. The latter approach is based on the assumption

that the central Arctic ambient noise is dominated by the radiation due to
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mechanical processes in the ice cover, so that the ambient noise is aggregate of

individual events [9] [34]. Therefore, it is obvious that the models that represent

probable source mechanisms of a single event need to be developed to understand

the central Arctic ambient noise characteristics as an aggregate of events.

In order to be more specific about the issue investigated in this study in rela-

tion to the central Arctic ambient noise, the processes involved in the generation

of Arctic ambient noise can be categorized as

(1) Development of environmental stresses,

(2) Ice plate motion induced by fracture due to the environmental stresses,

(3) Radiation from the ice plate into water.

The first phenomenon has been extensively studied and associated with the ob-

served ambient noise [31] [33]. The radiation mechanism from the ice plate to

water is also studied by some authors [42] [24] [23] [22]. However, previous pub-

lications are mostly speculative, and assume certain simple source types in the

ice plate. Also, it is not clearly understood yet how the environmental stresses

are released as a major source of induced ice motion. The possible candidates

are the three dominant types of crack [18] . Since the field observation of such

cracks does not seem to be feasible, modeling of radiation from different types

of crack is comparative to infer the source mechanism from the observed signal

of the ice event.

Another motivation of the modeling will be the expectation that an un-

derstanding of the relationship between the observed acoustic signal and the

physical process of sound generation will lead to the development of remote

sensing techniques suitable for the study of ice behavior and properties [10].

In this study, the scattering is not included, which may be important in aver-

age ambient noise for certain frequencies [22]. But, the observation of individual

event is made in the near field, where presumably the scattered field is much
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Figure 6.1: Geometry for central Arctic environment.

smaller than the direct field. It is noted that the attenuation can be included

by using complex wave number, and the water absorption is also included.

In Section 6.1, the environmental model for Central Arctic is discussed. In

Section 6.2, the radiation from three types of cracks is considered. For different

types of sources, the radiation pattern and temporal characteristics are given

and discussed. In Section 6.4, the effect of the non-compact and propagating

crack is discussed. Next, in Section 6.5, it is stated qualitatively how the im-

portant parameters affects the radiation pattern and the spectral and temporal

characteristics. In Section 6.6, the effects of the anisotropy observed in the sea

ice on the propagation are discussed. Finally, in Section 6.7, the results are

summerized, and an experiment will be proposed based on the results.
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6.1 The Central Arctic Environment

The central Arctic environment can be idealized as the laterally stratified medium,

assuming smooth boundaries1 , and neglecting the scattering due to ice ridges

and roughness. The assumption of homogeneity of the ice can be justified up

to the frequency of wave length much larger than the grain size of ice separated

by brine pocket. However, the inhomogeneity due to the temperature change

along thickness is expected to be significant. The change of the compressional

and shear speed due to the seasonal temperature is also significant [16], but the

ice is assumed to be homogeneous for the purpose of studying radiation char-

acteristics, concentrating on the source mechanisms. However, it is noted that

there is no limitation in obtaining solutions for such environmental model.

The Arctic environment assumed in this study consists of 6 layers (Fig 6.1).

The first layer is a vacuum half space, and then, a homogeneous elastic ice

layer of 3 m thickness. The next three layers are acoustic layers with sound

speed gradient, for which the analytical solution can be obtained in the form of

Airy functions. The last layer is a fluid half space with constant sound speed.

Although the bottom can be replaced by a sediment layer at 3000 m deep, the

contribution from bottom reflection will be neglected.

'The scattering due to rough surface has been treated by Kuperman and Schmidt [21]. This

scattering effect may affect significantly the average ambient noise, but it is neglected in studying

the direct radiation from sources.
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6.2 Radiation from Three Modes of Compact

Cracks

In this section, the acoustic emission from different compact sources in the ice

plate will be studied using the developed numerical code. The central Arctic

environment in Fig 6.1 is considered, and a compact crack is assumed to be

induced at 1 m from the top of the ice. The source time series and spectrum

for the seismic moment is shown in Fig 6.2. The fault orientation parameters

are b = 90* and 4, = 00, as the cases considered before. Note that the strike

angle 4, is referred to x-axis, i.e. the crack surface is parallel to the xz-plane as

shown in Fig 3.6. The following cases will be considered.

Case 6.1 Compact tensile crack with receivers at z = 60 m : The results are

shown in Fig 6.3 for radiation pattern and synthetic time series. The receiver

locations are same as for the previous outputs as in Fig 3.6.

Case 6.2 Compact tensile crack with receivers at z = 5 m : The synthetic time

series is shown in Fig 6.4, where the only difference from the Case 6.1 is that

the receiver depth is now at z = 5 m in order to observe the radiation from

the evanescent first antisymmetric mode in the floating ice plate. The inverse

Hankel integrands for the different receiver depths at z = 5 and z = 60 m are

given in Fig 6.6.

Case 6.3 Compact dip-slip: The same source and environment as in the Cases 6.1

and 6.2 are considered, except the source type is dip-slip. The radiation pattern

and synthetic time series are given in Fig 6.7

Case 6.4 Compact strike-slip : The same source and environment are consid-

ered, except the source type is strike-slip. The radiation pattern and synthetic

time series are given in Fig 6.8
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Figure 6.2: Seismic moment (a) source function, (b) spectrum
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Figure 6.3: (a) Radiation pattern for f = 100 Hz, (b) synthetic time series for
tensile crack with dip angle 6 = 90* in the central Arctic environment.

109

(b) C
N

O



360 0 idsafari j ice 154 fipnp.dat 3Dyl-PSysT
D: 1.0 m

330.0 RD: 60.0m

300.0 -- -

270.0 -

240.0

b.0 210.0

180.0

N 150.0

o 120.0

90.0

60.0

30.0-

0.0

-30.0-
0.0 0.1 0.2 0.3 0.4 0.5

Time (seconds)

Figure 6.4: Synthetic time series for tensile crack with dip angle 6 = 90*, re-
ceivers at z = 5 m, r = 300 m at every 30* in a central Arctic environment.

Two kinds of graphical display will be used. The first one is the contour plot

of the pressure field at 60 m depth, in Fig 6.3(a), 6.7(a), and 6.8(a) for tensile

crack, dip-slip, and strike-slip, respectively. For the same geometry and sources,

the synthetic time series are presented in Fig 6.3(b), 6.7(b), and 6.8(b). Since

the hydrophones are placed in the water, the pressure (negative of normal stress)

will be studied.

Considering the tensile crack case, the pressure field in the water at 60 m

depth shown in Fig 6.3 reflects the radiation pattern for tensile crack. The

time series in Fig 6.3 (b) shows two arrivals. As discussed in Stein [42] , the

first arrival is a radiation from the first symmetric mode in the ice plate, often

referred as the longitudinal mode. The second arrival is the so called acoustic

mode, i.e. the mainly waterborn arrival. The arrival time of the first signal can
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Figure 6.5: Dispersion curve for the first antisymmetric mode of the ice plate,
the upper line is for the group velocity and the lower line for the phase speed.

be roughly calculated from geometry by considering the critical angle at the ice-

water interface, giving 0.121 sec. The second arrival time is 0.212 sec. Another

mode that exists is the contribution of the radiation from the first antisymmetric

mode in the ice plate, which is often referred as the flexural mode. However,

at low frequencies, the first antisymmetric mode travel subsonically in the ice

plate with an evanescent field in the water. Since the 60 m depth is 2 wave

lengths deep for 50 Hz, which is the lower limit of the frequency components of

the source function given in Fig 3.5, this mode does not appear in the synthetic

time series shown in Fig 6.3(b). In order to see the dispersive flexural wave
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and (b) second, cos 26, orders and frequency f = 100 Hz, at z = 5 m and z=
60 m.
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radiation, the receiver is placed at z = 5m, for which the synthetic time series

for pressure is shown in Fig 6.4. At this point, it will be helpful to look at the

modulus of the integrand of inverse Hankel transform for each Fourier orders

in order to identify how the energy trapped in the ice plate contribute to the

pressure below the ice. The moduli of integrand for depth z = 5 m and 60 m

are given in Fig 6.6. The modulus of the integrand for Fourier zeroth order

at depth z = 60 m has two peaks at horizontal numbers s = 0.205 and 0.435.

The phase velocity of the first peak is 3065 m/sec, and represents the radiation

from the first symmetric mode in the ice plate. The second peak appears at a

speed of 1444 m/sec, and corresponds to horizontal acoustic propagation in the

water. The modulus in Fig 6.6 shows another peak at horizontal wave number

s = 0.675 corresponding to the first antisymmetric mode radiation. This mode

has a phase speed of 931 m/sec. However, the arrival from the flexural mode

arrives almost same time as the acoustic mode in Fig 6.4. The explanation to

this arrival time difference is contributed to the fact that the group velocity of

antisymmetric mode is larger than its phase speed. In fact, the dispersion curve

of the first antisymmetric mode of ice plate can be determined numerically from

the Hankel integrand using the relation,

C, = . (6.1)

Eq 6.1 has been estimated numerically for the flexural wave, with the result

shown in Fig 6.5 together with the associated phase speed. The dispersion

curve shows that the group velocity is - 1450 m/sec. and the phase velocity

is ; 930 m/sec. for 100 Hz, in agreement with the observation of the Hankel

integrand. In the high frequency limit, the phase velocity will approach to the

speed of the interface waves, i.e. Stoneley waves for the elastic-acoustic and-

elastic-elastic interfaces or Rayleigh waves for the elastic half space, where the

wave is no longer dispersive. Since the group velocity is dispersive for the present
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cases, the waves with low frequencies arrive late, which can be seen in Fig 6.4.

For the second Fourier order cos 20, the position of poles are the same but the

magnitude is about half of the zeroth order, which explains the slowly varying

amplitude along the azimuthal angle 0 in Fig 6.3 and 6.4. Thus, the observation

of the Hankel integrand gives physical insights in the excitation of the various

modes, and their corresponding phase speeds.

For the dip-slip crack, the pressure field and time series are given in Fig 6.7.

The amplitude of the first arrival, i.e. radiation from the symmetric mode in the

ice plate is of much smaller amplitude than the acoustic arrival, while, for strike-

slip (Fig 6.8), the amplitude of the acoustic mode is small. This is contributed

to the different source mechanisms. For dip-slip with dip angle 6 = 90* which is

presently considered, the particle motion is induced in vertical direction causing

more volume fluctuation at the ice-water interface, however, for strike-slip, the

particle motion is in horizontal direction exciting the compressional wave more

effectively.

Another important observation can be made from the transfer functions of

each crack mode. Denoting the source function in Fig 6.2 as s(t) in time domain

and S(f) in frequency domain respectively, and the system transfer function

h(t) and H(f) for each mode of cracks, the received signal at a receiver position

r can be expressed as

r(t,r) = s(t) * h(t,r)

R(f,r) = S(f) -H(f, r)

in the time and frequency domains. The transfer functions at the receiver posi-

tion r =300 m, d = 60 m, and 0 = 30*, are shown in Fig 6.9. The vertical axis

represents

Y = 20 log1 o H(f)|. (6.2)
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Figure 6.9: Transfer functions for each mode of cracks
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The transfer function characterizes the spectral shape of the received signal for

an impulse source function of a particular crack type, as can be seen in Fig 6.9.

However, the source type is not known priori, and has to be observed. Thus, the

transfer function can be only used for source time series inversion if the source

type is known.

It has been shown, from the figures 6.3, 6.7, and 6.8, that the radiation

patterns and other information concerning the different types of cracks includ-

ing the relative strength of existing modes, can be obtained. These distinct

characteristics of each crack mode can be used to identify the dominant source

mechanisms in the central Arctic environment from the collected data. These

discussions are found in the following section.

6.3 Most probable source types and correspond-

ing source strength

Most Probable Source Types

Among the three examples in the previous section, it is shown that the radiation

from the longitudinal wave in the ice plate is much stronger than the acoustic

mode in the water for tensile crack and strike-slip with dip angle 6 = 90*, which

is not the case for the observed signal in the central Arctic environment'. Thus,

the ratio of the amplitude of the radiation from the longitudinal wave in the ice

plate(A) to the amplitude of the acoustic mode(A,) can be used to determine the

most probable source types. The ratio, Ai, are shown in Fig 6.10 for three crack

types with different fault orientations. From the figure, the source types that
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Figure 6.10: Ratio of the amplitude of the radiation from the longitudinal wave
in the ice plate(A) to the amplitude of acoustic mode(A,), i.e. -.L-, for three
types of cracks with varying dip angle

satisfy the relative smallness of the radiation from longitudinal wave compared

to the acoustic mode are dip-slip with dip angle 6 ; 0* and 90* and strike-slip

with dip angle 6 a 0*. In fact, it is noted that the mathematical formulation for

strike-slip with dip angle 6 = 00 is the same as those of dip-slip with dip angle

6 = 0 * and 90*.

The previous study by Stein[42] used acoustic monopole as a source in the

ice plate. Due to the nature of the omnidirectional volume expansion, the ra-

diation from the longitudinal wave in the ice plate is much stronger than the

acoustic mode. Study by Langley[24,23,22] used a point force[24,23] and tensile

crack[22]. The radiation pattern at farfield caused by tensile crack with vertical

fault surface(dip angle 6 = 900) shows the strong radiation from the longitudinal
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wave in the ice plate regardless of the source depth at frequencies around 100

Hz, which agrees with the results given in section 6.2.

Source Strength Inversion

Since the formulations for dip-slip with dip angle 6 = 00 and 90*, and strike-slip

with dip angle b = 00, are all same, dip-slip with dip angle 900 are considered

for source strength inversion from the pressure in the water.

The pressure amplitude of synthetic time series in Fig 6.11 at range r =

300 m and at depth z = 60 m in the horizontal angle 0 = 30* is used to find the

source strength. The seismic moment to produce pressure 1 Pa at the specified

receiver position is

M =2.5 x 105N - m

Since the seismic moment is M =Any,

A = 2.5 x 10' = 8.6 x 10-5 m 3

The average displacements on the fault surface for give fault surface area are

A m 2 1 rmm

10 0.0086

1 0.086

0.1 0.86

0.01 8.6

The pressure field variation depending on the horizontal angle and range for

200 Hz is shown in Fig 6.12.

Although the amplitude ratio for the tensile crack with dip angle b = 00,
AL is somewhat large, the source strength will be given since the amplitude of
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Figure 6.12:
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Field pressure variation depending on the
Hz., source strength is 47r N -m

horizontal angle and

radiation from the longitudinal wave is affected by scattering due to the rough

surface of ice plate. From Fig 6.13, the seismic moment to produce pressure 1

Pa at the same receiver position is

M = 7.5 x 106N -m

Since the seismic moment is M = Au(A + 2t),

A 7.5 x 106
An=6.8 x 10~ m3

A + 2p

The average displacements on the fault surface for give fault surface area are
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6.4 Radiation from Propagating Cracks

The effect of the cracks being non-compact is important for the frequencies with

wave length of order of crack length or less, causing frequency dependent di-

rectivity pattern. In reality, the crack dimension varies from the order of grain

boundary length to order of 10"~ m. The field data analysis by Farmer[10]

suggests that the crack could be non-compact, and the estimated crack length

range between 27 and 63 m for maximum length based on the analysis of four

events. For the crack propagation speed, Mansinha[30] showed that the max-

imum crack propagation speed for a medium with Poisson's ratio of 0.25 is

0.775c, for pure shear fracture and 0.631c, for pure tensile fracture. The frac-

ture propagation speed increases as the Poisson's ratio increases. Therefore, for

the case of propagating cracks in the ice plate, the propagation speed will be

assumed to 1200 m/sec. for all types of crack. The model developed in Chapter

4 is applied to the following examples with a set of typical source parameters

to investigate the effect of propagating cracks. The radiation from propagating

cracks for the same environment (Fig 6.1) is considered. The source types are

again tensile, dip-slip, and strike-slip cracks with fault dip angle 6 = 900 and

strike angle q., = 00. The crack geometry is considered to be a unilateral line

crack with length 10 m, propagating from x = - 5 m to + 5 m. Since the

smallest wave length A = cmin/fma., where fmaz = 150 Hz and cmin = 1800
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m/sec for shear wave speed, is greater than 10 m, the spacing between source

should be smaller than A/8, which corresponds to phase difference 7r/4. In the

following examples, the distance between the discretized sources are taken to

be 1 m. The vertical dimension of the fault surface is also assumed to be less

than A/8 to be treated as a vertically compact line crack. In order to consider

a crack with a vertical dimension greater than A/8, it is necessary to use a two

dimensional surface crack rather a line crack. Therefore, the propagating cracks

presently considered are internal cracks centered at z = 1 m.

Case 6.5 Propagating dip-slip : The radiation pattern and synthetic time series

are given in Fig 6.14

The pressure field for dip-slip for 100 Hz harmonic source function (Fig 6.14)

is compared to the non-propagating compact crack (Fig 6.7). The spatial phase

interference causes the directivity pattern varying rapidly in the azimuthal angle

0. The dominant radiation direction is not quite clear since the direction of major

lobe is affected not only by the radiation pattern of the particular source type,

but also by the propagation speed. Since the crack propagation speed is subsonic,

i.e. less than the sound speed in the water, the major lobe does not appear in

the real space. However, for dip-slip, the acoustic mode is dominant, defining

the dominant radiation direction more clearly. The pressure field in 0* and 1800

directions vanish as the dip-slip radiation pattern has null in those directions.

This is an indication of strong dependence of the radiation of propagating crack

on the source types.

An important observation is the modulated, spread signal in the time se-

ries(Fig 6.14(b)). This is directly contributed to the modulation introduced by

distributed sources over the fault surface. The later arrival especially in the

direction of 0 = 150* has been observed in the crack radiation experiment by
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Figure 6.14: (a) Radiation pattern at f = 200 Hz, (b) synthetic time series for
dip-slip with dip angle 6 = 90* in a central Arctic environment.
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Savage and Mansinha [37] and considered as the stopping phase.

6.5 Parametric Study of Crack Radiation

In the previous sections 6.2 and 6.4, the radiation pattern and temporal char-

acteristics have been studied for a set of source and environmental parameters.

Source parameters include the modes of crack, fault orientation parameters,

source depth, and crack propagation speed and dimension for moving cracks.

The effect of the varying source parameters on the radiated field will be impor-

tant to identify those source parameters, since the interpretation of observation

can lead us to better understanding of the source mechanism.

In field observation of the acoustic radiation, the signal contains the infor-

mation on the source mechanism. The information consists of the temporal and

spectral characteristics for each spatial observation positions. The complete de-

scription of the field due to all source parameters can take up the rest of this

thesis, therefore, only the qualitative description is briefly given. It is considered

to be another research area to be studied for the source inversion techniques.

The effect of crack dimension on the directivity pattern is dependent on the

frequency. The number of lobes in the real space is determined by the relative

length of the crack dimension to the wave length. The spectral analysis of time

series at spatially distributed sampling positions can be used to determine the

frequency dependent directivity pattern giving the estimation of crack dimen-

sion. However, this problem may be more complicated by introducing other

parameters. For example, the crack propagation speed might vary along the

crack length, and the crack geometry can be complex. Although the theoretical

synthesis of these source mechanisms by the present approach is possible, the

inversion from the data may be a formidable task, unless the geometry of the

130



crack is known. These considerations could only resolved by a controlled exper-

iment, where the measurement of source parameters is possible. The design of

an experiment is, therefore, proposed in Section 6.7

The effect of source depth has been discussed in Langley [23] using the ver-

tical and horizontal forces based on the low frequency approximation. It shows

that the importance of the force position can be generally neglected for low

frequencies. For finite frequencies, however, the position of forces is important

exciting different modes of waves in the ice plate. For example, the symmetric

waves are likely to be excited when the source depth is in the neutral axis of the

plate including the fluid loading. Similarly, the antisymmetric loading excites

the antisymmetric modes more effectively. The orientation of fault surface has

significant effect on the radiated field for the tensile and shear cracks as well as

the point forces. The results for the varying fault orientation parameters are

not given, but their effects can be found by running the developed numerical

code. In fact, the inversion of the fault orientation parameters (refer to Fig 3.2)
are calculated from the field observation using various inversion techniques in

seismology.

For the finite frequencies, where the thickness of the ice is about the same

order or greater than the wave lengths of the frequencies of interest, there exist

higher modes of the symmetric and antisymmetric modes in the ice plate. In

turn, each modes radiate into the water complicating the field. In higher fre-

quencies, it is expected that the interface waves, such as Rayleigh and Stonely

waves, propagate along the interfaces of vacuum-ice and ice-water interfaces.

Since these waves are evanescent spreading cylindrically (amplitude ~), the

field at the surfaces of ice plate is dominated by them in the long range propa-

gation, unless there is scattering due to the rough surface of the ice plate.

Another environmental parameter which contains useful seismic information
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is the anisotropy of the ice. The anisotropy of the ice is caused by the verti-

cally oriented column of the ice separated by brine pocket, where the horizontal

strength of the ice is greater than the vertical direction. The distinguishing

characteristics of the transversely isotropic medium is the separation of SH and

SV waves when traveling in the horizontal direction. This is discussed in the

next section.

6.6 Anisotropy of Ice

The separation of SH and SV waves in the floating ice plate in the central Arctic

ocean has been reported in Hunkins [16], and is contributed to the anisotropy

of the ice. The anisotropy is caused by the structure of the ice, where the

vertically oriented plates separated by brine brine pockets. Thus, any vertical

shear stress would act along the many lines of weakness presented by the vertical

brine pockets, but any horizontal shear stress would meet the resistance of the

interlocking , randomly oriented grains. Indeed, the measurement of static ice

strength shows that the lake ice as well as the sea ice are not isotropic [16].

The velocity of SV and SH waves vary considerably with a seasonal change,

which is largely attributed to the variation of ice temperature affecting, again,

the elastic constants. Although the measurement of the SH wave provides,

when observed in the ice, the seismic properties of ice including some of the

elastic constant, this wave can not be detected in the water because the SH

wave is decoupled from the vertical displacement of ice, so that the water wave

is not excited. Therefore, it is concluded that the SH wave does not radiate any

energy into the water, and is trapped in the ice plate unless there is scattering

from the rough surface.

The following examples for the isotropic and transversely isotropic media
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will show that the effect of anisotropy of the sea ice. The compact tensile crack

at z = 1 m with fault orientation parameters 6 = 900 and d$ = 00 will be

considered.

Case 6.6 Isotropic ice plate in the central Arctic environment : This case is the

same as the Cases 6.1 and 6.2, where the compressional and shear velocities are

3500 m/sec and 1800 m/sec, respectively. except that the receivers are now in

the ice plate instead of water. Therefore, the field parameters are calculated

for 3 components of the particle velocities(Fig 6.18). Also, the inverse Hankel

transform integrands for each components of field parameters and Fourier orders

are shown in Fig 6.21, where the solid line is for the isotropic ice plate and broken

line for the anisotropic ice plate treated in the next Case 6.7.

Case 6.7 Transversely isotropic ice plate in the central Arctic environment

The source and environmental parameters are same as the Case 6.6, except

that the ice plate is now transversely isotropic. The transversely isotropic ice

plate consists of two layers. The compressional and shear velocities are 4000

m/sec and 2300 m/sec for the first layer, and 3000 m/sec and 1300 m/sec for

the second layer, respectively. The synthetic time series for the 3 components

of particle velocities are given in Fig 6.19. Also, the slowness surfaces for the

existing waves are shown in Fig 6.20.

First, let us take a look at the synthetic time series for Cases 6.6 and 6.7.

For the vertical displacements, Case 6.6(Fig 6.18(a)) shows that the earlier

arrival of SV Waves of flexural waves (second arrival) compared to that of

Case 6.7(Fig 6.19(a). This is due to the slow SV waves in the transversely

isotropic medium as can be seen in Fig 6.21. The peaks around 0.675 is the

contribution from the SV waves. The phase speed is

W
csv = ~ 930 m. (6.3)k
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However, it is noted that the group velocity is much faster than the phase speed

for the SV wave giving ; 1450 m/sec from Fig 6.5, which explains the arrival

time of approximately 0.212. The second peak of broken line in Fig 6.21(a)

for the transversely isotropic ice plate represents SV wave in the transversely

isotropic ice plate traveling slower than the SV wave in the isotropic ice plate.

The second arrival in the synthetic time series in Fig 6.18(b) is the SH wave

in the isotropic ice plate, which travels slightly slower than the SH wave in the

transversely isotropic ice plate. This can be explained again from the position

of the peaks for both media in Fig 6.21(d) and (f). The second peak with solid
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line represents the wave number for the isotropic ice plate and that with broken

line for the transversely isotropic ice plate, explaining earlier arrival of the SH

wave in the transversely isotropic ice plate than that of the isotropic ice plate.

The phase speed of the SH waves are

W
CSH = T 1800 m, (6.4)

which is almost the same as the medium SH wave speed of the ice (Fig 6.20).

This is because the SH wave is completely decoupled from the waves existing

in the water. The exact values of the phase speed of SH wave can be found in

Fig 6.20 for the different directions of propagation.

The arrival of the compressional waves for both media(Fig 6.18 and 6.19) is

not much affected as can be seen in Fig 6.21 for the modulus of Hankel integrand

at the top of the ice.

6.7 Proposed Crack Radiation Experiment

In spite of the large amount of ambient noise data collected over the years, no

data sets available are directly suited for studying the individual events to con-

firm existing crack radiation hypotheses. This is due to several factors including

the limited spatial sampling imposed by economy and the fact that most exper-

iments have focused on the low frequency, overall ambient noise, requiring large

apertures. Also, the layout of sensors requires a certain arrangement suited for

studying the radiation patterns from the sources. Therefore, in this section, a

series of experiment, i.e. laboratory and field experiments, will be proposed.

The objective of the proposed laboratory and field experiments are

1. Laboratory Experiment

e Validation of model with the controlled sources.
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e Development of inverse technique.

2. Field Experiment

* Source parameters inversion from the observed data including source

location, crack type, crack dimension, and propagation speed.

The data obtained in the laboratory will be analyzed to show the radiation

pattern in the ice and water, and used to test the existing analytical and nu-

merical models. This will be done by investigating the directivity pattern as

well as the temporal characteristics for different modes of cracking or different

forcing mechanisms. Also, the effects on the pressure field in the water of the

non-compactness of a source with finite crack propagation speed in the floating

ice sheet will be studied. It is the expected outcome of this proposed experiment

to develop the inversion techniques from the known source parameters and the

observed data. Once the spectral and temporal characteristics of each fracture

modes are identified by fitting data through our analytical models, these models

can be applied to the data collected in the central Arctic environment in various

field experiments. For example, radiation patterns for each mode of cracking

can be used to identify which modes of cracking are dominant, and how they

radiate energy into water in the central Arctic environment. Thus, better un-

derstanding of the individual crack radiation events can lead us to refined Arctic

Ocean ambient noise model.

The model developed in this research served as a guide to design the ex-

periment and gives ideas about what is to be sought from the analysis of data.

The idea is to relate the characteristics of the observed data to the features

predicted by the model, yielding the source parameters of the event. The source

parameters thus obtained are directly related to the physical source mechanisms.

Following are discussions about what aspects are to be sought from the data.
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The details of these aspects are found in the sections 6.2, 6.3, and 6.4.

In the frequency domain, the spectral level at each spatially distributed sen-

sor is plotted to display the directivity pattern at each frequency. This will be

done for a known mode of cracking with crack parameters such as dimension,

direction and propagation speed. This directivity can be used to identify the

source type and crack size effect. This methodology has been developed and

widely used in seismology. Also the slope of roll-off in spectrum for each sensor

location can be used for identifying the source time series. The temporal char-

acteristics, including the duration of observed signal and the stopping phase,

can be related to the dimension of the crack.

6.7.1 Laboratory Experiment

In order to investigate the crack radiation problem, it is necessary to minimize

scattering due to rough surface, pre-existing cracks, or ridges so as to concen-

trate on the source inverse problem. In the Arctic Ocean, scattering due to

inhomogeneity of the ice such as rough surfaces, pre-existing cracks and ridges

are complicating factors obscuring the crack radiation problem. It is therefore

essential initially to perform a laboratory experiment which eliminates these

complicating factors.

The laboratory experiment should include direct measurement of crack pa-

rameters, such as size, propagation speed and direction. Crack size and direction

can be observed after the event, however the propagation speed is hard to mea-

sure because of its highly transient nature. Here, a high speed camera could be

used provided that the precise position and time of crack formation is known.

Another way is to measure the time history of the displacement along and across

the crack, e.g. by means of accelerometers or strain gauges.

Inducing a desired mode and size of crack without interfering with the wave
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field is difficult, and is another research area being studied S. Although the

mechanical properties of ice are rather complex, it is known that the ice is much

stronger in compression than in tension. It is possible that this fact may be

exploited. In order to ensure the crack is formed at the desired position with

certain direction, the prescribed crack surface is cut so as to reduce the cross

sectional area. These aspects of inducing different modes of cracks can be found

in the ice mechanics literature[8].

The field parameters to be observed include the pressure in the water as well

as the displacement in the ice plate. Since the ice is an elastic plate, supporting a

large number of Lamb modes, it is expected that valuable information concerning

the cracking process can be obtained by measuring the ice motion in addition

to the sound field in the water. The other observables are the crack parameters,

such as the volume expansion for tensile cracks, the seismic moment for shear

cracks, the dimension of the crack, and the crack propagation speed. These crack

parameters can be best observed by measuring the particle motion at the vicinity

of the crack surface. In order to measure the time history of displacement at the

crack surface, it is suggested to use high speed camera with a resolution enough

to observe the moving crack tip. Another way is to place the accelerometers or

strain gauges along the prescribed crack allowing for localization of the moving

crack tip.

Temporal Sampling

The sampling frequency of the sensors is determined based on the size of the

crack to be induced, since we are looking at the radiation pattern of non-compact

source. Non-compactness of the crack is determined by the size of the crack

relative to the wave length. The non-compact source has phase interference due

3Discussion with Professor T. Wierzbicki
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to its finite size of source distribution. This spectral behavior of the pressure

field ( or, stress field in the ice ) show the periodic nulls and peaks depending

on the frequency, which is called frequency dependent directivity. In order to

identify this behavior, the observation of data with high Nyquist frequency is

necessary. For this purpose, the sampling frequency of 10 KHz is suggested.

Above approximately 10 KHz, the assumption of homogeneity of ice does not

hold, since the roughness and grain sizes are greater than the wave length.

Spatial sampling

Although the presently developed solution technique is not restricted to the

far field, the far field measurement have some advantages in applying to the

average ambient noise, so that it is recommended to place the receivers and

accelerometers in the far field. If the sensors are in the near field, the radiation

pattern will be range dependent so that the directivity pattern is hard to identify.

Moreover, most analytical solutions are valid only in the far field. Conditions for

the far field approximation are I < r for amplitude, and i < M for phase, where

r is the distance from crack to observation point. These conditions reduces to

I < r (6.5)

k12  12 f(
-= - < r, (6.6)

2?r c

where c is the medium phase speed, f is the frequency of interest, k is wave

number, I is the crack dimension, and r is the receiver range.

Based on the considerations presented in the previous sections, it is recom-

mended that the spatial sampling is at every 30* at least in the horizontal and

vertical directions to identify the spatial directivity due to the compact direc-

tional sources, as well as the frequency dependent directivity due to the moving
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cracks.

Design Of Array Of Sensors

Based on the considerations presented in the previous sections, an array design

will be proposed. To measure the displacement field in the ice, 16 tri-axial

accelerometers need to be placed in the ice(Fig 6.22). The distance from the

crack to the accelerometers r is recommended to be as large as the dimension

of the laboratory allows, so that the longitudinal and flexural modes in the ice

plate can be observed separately. When the accelerometers are placed at r ~

150 m, the 10 Hz frequency components will be separated by a time delay of one

wave length traveling time, i.e. 0.1 seconds (refer to Fig 6.5), for flexural mode.

Similarly, a time delay of 10 wave lengths of traveling time will be achieved for

the 100 Hz frequency component. If the distance, r, is 15 m, the separation

time will be reduced by a factor of 10. When the separation of existing modes

is critical, the scaled experiment with artificial is suggested to reduce the size of

laboratory. Alternatively, the lake ice can be used, where the sensors are placed

far enough to separate the different modes.

To measure the pressure field in the water, 20 hydrophones are to be sus-

pended in the water(Fig 6.23). The hydrophones can be placed about same

distance as the accelerometers in order to separate the longitudinal mode from

the acoustic mode. The depth of hydrophones, however, need to be greater than

half the wave length at the frequency of interest, so that the flexural wave does

not interfere with the other modes. For example, when the frequency of interest

is 100 Hz, the depth of hydrophones should be greater than d z 3.5 m.

The crack parameters are found from the time history of the particle motion

at the crack surface. To measure the displacement along and cross the crack, tri-

axial accelerometers are placed as indicated in Fig 6.24. As mentioned earlier,
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Figure 6.22: Top view of an array of accelerometers in the ice.
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Figure 6.24: Tri-axial accelerometers placed along the prescribed crack surface
to measure the displacement along and across the crack surface.

a high speed camera is recommended along with the accelerometers.

6.7.2 Field Experiment

Once the controlled experiment in the laboratory is carried out, and the features

of the data are properly explained and matched with the model developed, a

field experiment should be performed. The difference between the laboratory

and field experiment will be the randomness of the event. The likelyhood of

observing events within the circular array of radius 300 m, in which we can

obtain data points in all directions, can be estimated from previous experiments.
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For example, in the FRAM IV study [44], it has been shown that for the center

annulus of 30 square Km, there were 91 events per 30 square Km per 662 minutes

of observation, or approximately 0.3 events per square Km per hour. Since our

circular array has 0.28 square Km, we expect about 0.1 events per hour within

the circular array. Therefore, the expected duration of the experiment should be

10 Hrs to observe an event within the circle. However, since the signal to noise

ratio of an event depends on the distance from the event to the hydrophones,

we might observe more events in the small circular area enclosed by an array of

hydrophones.

6.8 Conclusion

The developed model has been applied to the various examples to demonstrate

the solution technique, and to find a number observations for the radiation

pattern and temporal characteristics depending on the source and environmental

parameters. The source parameters can be the types of source, or mode of crack,

dimensions of crack as well as geometry (fault surface orientation parameters

A, , 6, refer to Fig 3.2), propagation speed and, source depth. Among the

environmental parameters, the parameters of importance are thickness of the

plate, the mechanical properties of the medium, such as the anisotropy and

inhomogeneity. The change of the radiation pattern, and temporal and spectral

characteristics are discussed.

First, the radiated field from the three types of fracture show the distinct di-

rectivity pattern when observed in the water, depending on the fault orientation

parameters. The presence of the ice-water interface, coupling the P and SV

waves, complicates the radiation pattern as well as the time series separating

the contributions from the radiation of different modes existing in the ice plate.
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The relative strength between the radiation from the acoustic, antisymmetric,

and symmetric modes in the ice plate for the three types of fracture is used to

infer the most probable source types and corresponding dip angle based on the

observation that the acoustic mode is much stronger than the radiation from the

longitudinal wave in the ice plate. It is found that the shear cracks, i.e. dip-slip

with dip angle 6 m 0* and 90* and strike-slip with dip angle 6 ~ 00., are the

most probable source types. The corresponding source strength is related to the

field pressure in terms of the seismic moment and the average displacement over

specified fault surface area.

The temporal characteristics of the non-compact and propagating crack can

be characterized as the modulated signal, of which cross-correlation between

channels (receiver positions) are very poor. Another noticeable result is the

rapid change of directivity in the varying angle. The larger the dimension of the

crack is, the more peaks and nulls of the radiation pattern appears to give rapid

variation with angle.

Next, the effect of anisotropy of the sea ice is discussed. The sea ice is shown

to be anisotropic, where the SH and SV waves separates. The additional mode

existing due to anisotropy, however, does not affect the radiation pattern, since

the SH wave in the ice plate does not excite the vertical displacement at the

ice-water interface so that the water wave is decoupled from the SH wave.

The sources in the ice plate as an element of Arctic ambient noise can con-

tribute to the average noise either as the direct radiation or as the scattered field

due to the inhomogeneity and rough boundary of the ice. In certain frequencies,

the different types of crack modes, or physical mechanism can be important.

Further, the ambient noise forming process in other frequency regimes may be

completely different, as well as the responsible environmental stresses. The

application of this model, therefore, should be made with the careful physical
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insights to the overall ambient noise frequencies as well as the corresponding

generation mechanisms and driving forces.
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Chapter 7

Conclusions

7.1 Summary

The summary of this thesis emphasizing the original contributions can be made

under two categories. One is the development of the efficient numerical algo-

rithm as well as the corresponding solution techniques for radiation from the

compact and non-compact directional seismic sources in a laterally stratified

medium, combining the existing numerical code (SAFARI) with source repre-

sentation in an unbounded medium. The compact source representation by

Keilis-Borok (1950), reviewed in Sato [36], is treated in Chapters 2, and serves,

in nature, as tutorial and background for the further development in the Chap-

ter 3. In Chapter 3, which is the kernel of this thesis, the representation of

seismic sources is extended to the formulation of tensile crack in addition to

the shear fault formulation, and transformed to the cylindrical coordinates and

arranged in such a way that the formulation can be applicable to the global ma-

trix method. Consequently, the source terms are incorporated into the global

matrix method, treating the multiple azimuthal Fourier orders simultaneously.

In Chapter 4, the superposition model to treat the radiation from non-compact
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array and propagating crack model taking advantage of numerical method, also,

has been developed eliminating the numerical inefficiency and convergence prob-

lems caused by the expansion of the field with Bessel function[38]. This non-

compact model is of great practical importance with potential applications to

the radiation from an array of airgun or explosions for seismic exploration and

propagation. Another problem treated in Chapter 5 is the propagation effect

of the transversely isotropic medium, of which applications are found in the sea

and lake ice, and the periodic finely layered sediment. Since the theory for the

transversely isotropic medium is well established, the focus is on the formulation

of the compatible boundary conditions with the global matrix approach.

The other category is the outcome of the application of the developed model

to the physical system. The developed model is basically applied to the canoni-

cal problems and to the environmental model of the central Arctic. In Chapter

3, the canonical examples of radiation from the three different modes of crack in

an homogeneous unbounded medium are discussed. The spatial and temporal

characteristics of the radiated field are distinctively different for the three modes

of crack, i.e. tensile crack, dip-slip, and strike-slip. The detailed discussions are

given in Chapter 3.5. The application of non-compact and propagating crack

model is found in Chapter 4, where the radiated field are characterized by the fre-

quency dependent directivity pattern, and the temporal characteristics include

the existence of the stopping phase, the modulation of signal by the dimension

of the crack surface, and poor cross correlation due to the phase interference

due to the crack dimension. The results of the application to the central Arctic

environment shows more complications introduced by a wave guide in addition

to the general characteristics mentioned above for the canonical problems. The

coupling of the P and SV waves at the ice-water interface introduces the dis-

persion of each components of waves, and the corresponding radiated field in
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the water. For the directional sources, the SH wave is excited and trapped in

the ice plate, since the SH wave decouples from the P and SV waves and there

exists only the P wave in the water. When the rough boundary with scattering

effect is considered, the contribution of the scattered field from SH and SV

to the average ambient noise could be significant, of which effect needs to be

studied in a organized way. Finally, the effect of anisotropy of the ice reported

by Hunkins[16] is simulated to give the separation of the SV and SH waves,

which contains the information on the elastic constants in different directions as

well as the dispersion relation for the given geometry.

7.2 Discussions and Suggestions for Future Stud-

lSies

Solution Techniques

The applicability of presently developed solution technique is limited to the

range independent medium, which is often referred as the laterally stratified

medium, the vertically varying medium, or the laterally homogeneous medium.

This environmental model is of the great practical importance for many physical

problems, such as the seismic propagation and underwater acoustic propagation,

where the medium can be treated as laterally homogeneous. As the more accu-

rate modeling becomes necessary, the laterally inhomogeneous medium needs to

be modeled, especially for high frequencies where the effect of the local inhomo-

geneity is significant, of which example can be found in the scattering from the

ridges in the central Arctic environment affecting the directly observed signal as

well as the average ambient noise as result of long range scattering effect.
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Applications

Application of the developed code can be found in seismology as well as in

underwater acoustics. The applications include the seismic exploration, the field

solution to the radiation from the sonar, and the design of the efficient volume

transducer array with focusing and steering. For given environment, the source

discrimination can be made from the spectral and temporal characteristics of

the observed data.

As a source inverse problem, the developed code can be instrumental in

studying the source mechanisms of fracture in the floating ice plate in the central

Arctic environment as an element of the average ambient noise. The directivity

pattern of the compact and non-compact fracture and the temporal character-

istics including the dispersion and separation of different modes existing in the

ice plate as well as the field in the water for different types of fracture have been

found to be readily applicable to a proper set of data. For continuing research

effort, controlled crack radiation experiment is proposed in Chapter 6.6 and

given with some insights to the layout and the measurement of field parameters

based on the preliminary outcome of the model. The experiment will be used

in identifying the dominant crack mechanisms, the radiation and propagation

effects that might be important for different environment. The broader issues,

to which the developed model and crack radiation experiment is instrumental

in relation to the central Arctic ambient noise, are

" in what frequency band is the crack radiation most important ?

" what other mechanisms are dominant in other frequencies ?

Regarding to the first question, only the field observation can be source of in-

formation that leads to the answer. Again, the problem is complicated by the

varying environment, which modifies the natural frequencies of the environ-

mental system. However, the properly scaled and conditioned experiment and
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analysis is the most probable candidate as means of the answering the raised

questions.

Therefore, it is concluded that two lines of research be pursued towards

better understanding of the crack radiation. First relates the proper modeling

of the physical system, as being undertaken by many researchers. These include

the propagation effect in the range dependent environment including scattering,

and other kinds of sources, such as gravity waves at extreme low frequency,

radiation and propagation at high frequency where the medium can no longer

be treated as homogeneous, and so on. Second, the experimental approach using

the field and laboratory data should be used to define the dominant mechanisms

as well as confirm the prediction made by modeling, which will eventually lead

to better understanding of the physical mechanism and to constructing a model

to predict the necessary informations.
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Appendix A

Potentials, Displacements and

Stresses of Various Sources with

an Arbitrary Direction in

Cylindrical Coordinates

The potentials, displacements and stresses caused by various sources are pre-

sented in this section. The potentials are related to displacements in the follow-

ing manners.

u = Vq+VxVx(Or,,be,#,z) (A.1)

= V4 + V x V x (O,O,A) + V x (0,0,0) (A.2)

The potentials are summed over each Fourier order m, where the m-th order are

denoted by superscript m. Using the potentials defined in Eq A.1, the potentials

are

00 Cos M1
4 (r, 6, z) = S Om (r, z)

m=0 sin mO
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00 K.
A(r,0, z) = Am(r, z)I

m=Os

*=* s
00

#(r, 0, z) = Z # m(r, z)
m=O

Using the definition in Eq A.2, the potentials are

00 
c

4(r,6, z) = O 4(r, z)m=O s
00

= Zt@M(r, z)
m=O

00

= $ M(r, z)
m=O

00
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cos m1

sin me
sin mO
-Cos MO

cos m]

sin mO

A.1 Point Force in an Arbitrary Direction

Denoting the force vector F = Fe, + Fye + Fe, as a source term, the potentials

and the field parameters are as follows.

Potentials

eiwt 00

47rpw 2 Jo

FzgaJo(sr)

+F, cos 0 s Ji(sr)

+F, sin 0 s Ji(sr)

e~"l"-z. ds
a
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(A.3)
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A.2 Dip-slip

Potentials

The potentials following the definition in Eq A.2
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eiwt oo 0.5 sin 26 Le-"Iz-z-
= 22M3 J3(sr)sds

47rpo o -0.5 sin 26 Le-Ol"--

eiWt oo -0.5 sin 263e-*IZZl1
= 2 Ma Ji(sr) sds

4 7rpw2 0 -0.5 sin 26(s2 - 232)eI]-Plz-z.|

eiwt oo -0.5 sin 26 (S2 + /32) L'e-az-zI

47rpw2 M [o +sin 26 s2ge-Piz-zi 3 J2(sr)sds
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eiwt r0

4irpw o

iwt 00

= rp2 Moyt f4irpo o

- sin 2b ss~e-Iz-ze1 Js(sr)sds
+sin 26 sSe-pz-z.

sin 26 s3 -alz-z, 1
-sin 26 seIzz JJi(sr)sds

A.3 Strike-slip

Potentials

The potentials following the definition in Eq A.1 are

Mo 4 Wt o
47rpw2 0 f

- eiWt
- 4irpw2

A7rpw 2

joo[

j0

foo

fo 0

sin 6 sin 26s 2 J2 (sr)

-2 cos 6 cos 6saJi (sr)

sin 6 sin 26sJ1 (sr)

- cos 6 cos eg3Jo(sr)

sin 6 cos 2sJ1(sr)

+ cos 6 sin 0 '/3Jo(sr)

Ie aiz -z.I~sds

e-,1ZIzIIds

e- IZ-Z~l ds

Z - M 2 e cos cos 6sJ1(sr)e-ilz-z.I ds
4rpow fo i

The potentials following the definition in Eq A.2

Mo riWt f
47rpw2 f0

A = MO oo i 0

4rpw 2  0
A- e j~ [0
= e j [

sin 6 sin 20s 2j 2(sr)

-2 cos 6 cos 6gsaJ1(sr)

cos 6 cos OS 2s2 -k 2 J1 (sr)

- sin 6 cos 2O 3J 2 (sr)

cos 6 sin 6tj3 2J1(sr)

+ sin 6 cos 26k 2 J2 (sr)

e -alz z~isds
I a

e-plz-z,\ ds

eIZ-zI 4ds
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Displacements and stresses

For cos 0 order,

eiwt
4rpw2 MO

eiwt

47rpw

eiwt

47rpw

Piwt

47rpw2

m _ eiwt
Oz 47rpo

UO&z =-2 Mo

47rpow

f00 -2 cos Sase-az'-z,|
IO Cos b(2S2 - k2)_Ee-lz-zI J J(sr)sds

f 00- 2cos6 s2 ealzz~l J 1(sr)sds
o + Cs22 cks b se-ftz-z,\

00  +2 cos 6b s2e-Iz-z,] Jo(sr)sds

fo -2 cos 6 (#2,-p6jz-z, j

00 2 cos 6 s(2s2 - k 2)e-alz-z 1

O -2 cos 6 s(2s2 - k2)e-plz-zd

J 00

0

pf o

roo

4 cos 6as2e-az-z,\ JJ2(sr)sds
- cos 6(1 + 3#s 2),-PIz-z2

-4 cos 6as2e-az-zI1

+ cos b(23 + + 8s 2)e,z-IJ Jo(sr)sds

For sin 20 order,

eiwt
=, 2 MO

eiwt
= 2 Mo47rpw2  o

eiwt
=-2 MoA47rpw

eiwt

47rpw
2

r00
00

oo0

o0

sm 6 (s2e-azz,|

- sin b 2e-piz-z,\

sin 63e-Iaz-z,\a

- sin bA!e-Iz-z4

J J2(sr)sds

J 3(sr)sds

0o - Sin 613e-*l"-*-lIn a 1 Ji(sr)sds
0 - sin S(s2 - 2p2)AeL-#z-z,\

oo - sin 6(2s 2 - k2)je-alz-z,\

J * s J 2(sr)sds

[00 -2 sin 6# sse-czz,\1

o +2 sin bsse-izz,1 JJ(sr)sds
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eiwt 0o

47rpw2 J[o

2 sin 6 gs 3e-*"-'I 1
-2 sin6 b 2eizzJJi(sr)sds

A.4 Tensile Crack

For the purpose of short hand, the following quantities are defined to be used

in this section A.4.

Mi = MO, 61 = 90*,

M2 = MO, 62 = 6 + 900 , and

M 3 = -6 =6

except that M1 = -Mo when m = 2, cos 20 order.

Potentials

The formulation of potential for tensile crack is

3

= 04' (r, 0, z; 6k, Mk)
k=1

3

|r= O 1 ,k(r,0,z;6k,Mk)
k=1

3

ke = Z10e,k(r,0, z; 6k, Mk)
k=1

Oz ZO'z,k(r, 0, z; 6k, Mk) ,
k=1

where the potentials with prime (1), which is a single couple without moment,

are

- Meiwt 00

k -- k 2
A7r pw 2 0

{-0.25(s 2 - 2a 2)

+0.25 cos 26k(s 2 + 2a 2)} Jo(sr)

- sin 26k sin e asJ1 (sr)

-0.25(1 - cos 26k) cos 20s 2 J2 (sr)

e-az-z.| Ids
a
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_ Mke iwt 00O

47rpw2 ] [
M eiwt 00

47rpw2 Jo

Mkeiwt e iwt 00

47rpw2 Jo

-0.5 sin 26k sin eOi3Jo(sr)

+ {0.25(1 - cos 26ks)

-0.25(1 - cos26k) cos 28s} Jo(sr)

-0.5 sin 26k cos 6t#Jo(sr) -p1iz-Z.I. ds
+0.25(1 - cos 26k) sin 20sJ1(Sr)

0.5(1 + cos26k) Jo(sr) e-PIz-z.l ds
-0.5 sin 2 6k sin OsJi(sr) J

Displacements and stresses

The displacements and stresses can be expressed in the form of summation for

each orders, for short hand.

w'(r, z)

um(r, z) + vm(r, z)

3

= Z ,w'(r, z)
k=1

3

= Zum(r, z) + vm"(r, z)
k=1

For zeroth order,

eiwt 00

47rpo2 o

e 2 Mk
47rpo fo

eM 100
= 2 Mk f47rpo2 o

{0.25(s2 - 2a2

-0.25 cos 26k(s2 + 2a 2)j I-alz-z-1

+(0.25 + 0.75 cos 26k) s2,e-iz-Zi

{0.25(s 2 - 2a2)
-0.25 cos 26k(S 2 + 2a2)±} e-az-z-

+(0.25 + 0.75 cos 26k)sfle-PIz-z.|

{-0.25(82 - 2a2)

-0.25 cos 264(S2 + 2a2) s e-aIz-z.I

-(0.25 + 0.75 cos 26k) spe-IIZ-Z-i

Jo(sr)sds

J1(sr)sds

j_1(sr)sds
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um - eiwt 00
zz,k - 2M jy

47rpw fo

orMk r~ - -eiwt Mk o0

rz , z,k 4rj2 Mky

cM, - amrzk z,Ic
= e 2 M y 0

41r pu o

-2+#2 {0.25(s2 - 2a2)

-0.25 cos 26,(s2 + 2a 2) e-alz-z-| Jo(sr)sds

-(0.5 + 1.5 cos 261)8s2e-Plz-zvI

{-0.5(s2 - 2a 2) S

+0.5 cos 26L(82 + 2 2) e-alz-z-I Ji(sr)sds

-(0.25 + 0.75 cos 264) s(s 2 + #2)-PIz-zI

{0.5(S2 - 2a 2) S

-0.5 cos 264(s2 + 2a2)s} e-alz-z| J.-1(sr)sds

+(0.25 + 0.75 cos 26k) gs(s 2 + 0 2)e-Plz-zI

For sine order,

wt

uM+vi

0zz,k

urMA + 47 i

z, k - mUO z'k

eiw oo as sin 26e-az-z, 1
=4 2 Mk ~ ~ (5 2 ~zd J1 (sr)sds

47rpo2 o -0.5A (#2+s2 )e-O12-Z,1

eiwt [00 0 2 sin 26e-Iz-z\ 1

Mk Jo(sr)sds
4irpw 2  o +2 sin 24k #2 e- ](z-z.d

eiwt oo -2 sin 2k s2+#2 e -aiz-z,1

47rp 2  o +2 sin 26 o(s2 + #2 )e- z- , sd s

eiw_ oo -2 sin 2 as2 )e-lz-z,
4  2 Mk [ J 2r2 + 2s

Air pw a +0.5 sin 26k 1:(3#+ 2)e-P|z-z,\

e Miw2 oo 2 sin 26 as2e-alz-z, J(sr)ds

- sin 26k (# 3 + 0.58 + 0.5#s2 )e-PIz-z-

For cos 20 order,

eiwt / 0 oo 0.25gs 2e-alz-z,1
= 2 [ MeII (1 - cos 26k)J2(sr)sds

47rpo -0.25gs2 -zz,
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47rpo o

eiwt

= 2 Mk

4irpw

iwt 2 MA47rpw

=2 MkA47rpo

eiwt

= 2 Mp kA
47rpw

0.25L -e-aIz-z,1
* --0.258 e-Al"-z*-|

(1 - cos 26) J 3(sr)sds

-0.25 -le-*z-z-I1
1(1

-0.25(s2 - 2#2) e-pIz-z,\

f oo -0.25(s2 + #2) e

Jo[ +0.5s2/e-pzz,

o 00
-O.5 s3e-aIZ-ZdP

+O.5 s 3e-PIZ-Z

-alz-z.I1
(1 - cos 26k) J2(sr)sds

(1 - cos 26k) J3 (sr)sds

f00 .5 s~e-Iz-ZO1 J1(sr)sds
o -0.5g s#2e-#jz-z,1

A.5 Explosive Source

Potentials

47rpw2

00ah2 -aizz,\Sds
fo a

A =0

= 0

Displacements and stresses

Since the explosive source is omnidirectional, there exists only zeroth Fourier

order.

Moew* -
47rp 2 o

V2Jo(sr)sds

Moewt h2 J1 sds
47rpw2 fo a
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M- M Moe'w* 00
U"'v" = - 2 h2'J-1(sr)sds

47rpw o a

C,' = iw2 f0 h2 (2s2 - k2)Jo(sr)sds

=Moesw* Mf.hsJls-d
M + Om = __2 " 2sh2 J(sr)sdsrz #z 4xpw 'U

= Moe* t 00arz - oga = - w2 f 2sh J_1(sr)sds

It is noted that the seismic moment Mo has been used for source strength of

explosive source in a solid medium. However, the quantity, MOf , can be readily

converted into the volume displacement using the relation h2 = p, which is

widely used in the acoustics community.
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